WWF

WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption.

ACKNOWLEDGEMENTS

We want to thank everyone who has contributed to this report. Our thanks to those who provided input into the factsheets, including Adewale Adeleke (WA BiCC), Adrian Choo (WWF-Malaysia), Alesha Williams (WWF- Guianas), Analiz Vergara (WWF-US), Andrey Shegoles (WWF-Russia), Anggi Prathama Putra (WWF-Indonesia), Antonio Castellanos (CIMSUR, UNAM), Antonia Serra (WWF-Mozambique), Aye Myat Thandar (WWF-Myanmar), Ben Miller (King’s Botanic Gardens, Perth, Western Australia), Benoit Mertens (IRD), Brian Hurley (consultant), Cesar Suarez (WWF-Colombia), Davison Gunmo (CIFOR), Edelgar de Oliveira Rosa (WWF-Brazil), Eduardo Rendon (WWF-Mexico), Faisal Mohd Noor (WWF-Malaysia), George Schoenfeld (CIFOR), Ghislain Vieilledent (CIRAD), Guillaume Lesoeur (CIFOR), Jaap van der Waarde (WWF-Cameroon), James Watson (University of Queensland), John Mendelsohn (consultant), Jorge Rivas (WWF-Ecuador), Jose Soto (WWF Guatemala), Kokok Yulianto (WWF-Indonesia), Koulang Chey (WWF-Cambodia), Krysten Olizinski (EFT), Laurent Some (WWF East & Southern Africa), Laurent Ledose and Mario III (WWF Africa Programme), Maria Anaulo Pota (WWF-Guatemala), Maria Eugenia Periago (Fundacion Vida Silvestre Argentina), Mariana Napolitano Ferreira (WWF-Brazil), Martin Taylor (WWF-Australia), Nike Doggart (University of Leeds), Paula Hanna Valadejo (WWF-Brazil), Quoc Nguyen Anh (WWF-Viet Nam), Rina Andrianaivony (WWF-Madagascar), Sandra Petrone Mendoza (WWF-Mexico), Sandra Valenzuela (WWF-Colombia), Sean Maxwell (University of Queensland), Selma van der Hau (CIFOR), Stefano Zensh (WWF-Myanmar), Susannah Suli (University of Leeds), Tam Le Viet (WWF-Viet Nam), Teak Seng (WWF-Cambodia), Teresa Olemako (WWF-Africa Programme), Thibault Lebede (WWF-Belgium), Yann le Polain de Waroux (McGill University), Yumiko Uryu (WWF-Indonesia). Thanks also to colleagues who were part of the consultation dialogues, including Alphonse Ngniao (WWF-Cameroon), Azeela Kamelia Abdullah (WWF-Malaysia), Barnabas Mawire (WWF-Zimbabwe), Bouchan Sakonnavong, (WWF-Laos), Eugenie Ndong Doutoumoune (WWF-Gabon), Floris Botamba RIP (WWF-DRC), Grace Sama, (WWF-Malaysia), Lawrence Mbowambo (WWF-Tanzania), Malory Graves (WWF-Greater Mekong), Miguel Pacheco-Ganoza (WWF-Colombia), and Teresia Olemako (WWF-Tanzania). We are also grateful to those who spent time reviewing specific sections of the report, including Akiva Fishman (WWF-US), Allard Blom (WWF-US), Amy Smith (WWF-US), Kurt Holle (WWF-Peru), Kemen Austin (RTI), Hermine Kleymann (WWF International), Kristin DeValve (FAO), Lisa Rausch (University of Wisconsin), Luis Román (WWF-France), Murali Sridharan (FAO), René Dumont (FAO), Valerie Passarelli (WWF-Switzerland), Wendy Elliott (WWF International Wildlife Practice), and Youha von Lauer (WWF-Germany). Edelgar de Oliveira Rosa (WWF-Brazil) and Jan Willem van Gelder (Profundo) contributed text for boxes, and Paola Tibaldeschi (WWF-Norway) supported with data. We are also thankful to those who helped review the full report, including Aditya Bayunanda (WWF-Indonesia), Andrew Wardell (CIFOR), Charlotte Streck (Climate Focus), Craig Beatty (WWF-US), David Kaamowit (CLIAA’s Senior Adviser), Fran Raymond Price (WWF International), Jean François Timmers (WWF-Brazil), Jeffrey Sayer (University of British Columbia), Jonah Rusch (EII), Jordan Barkin (WWF-Bolivia), Martha Stevenson (WWF-US), Martin Taylor (WWF-Australia), Niki de Sy (WUR), Sheila Wertz-Kansunnikoff (FAO), Susanne Winter (WWF-Germany), and William Baldwin-Cantello (WWF-UK). Last but not least, our appreciation goes to Huma Khan (WWF International) who contributed in all stages to enhancing the quality and consistency of the report, helping us sharpen our messages, and be aware of the audience this report is intended for. We are also grateful for the funds received for undertaking this work from WWF-UK, WWF-Germany, WWF-Finland, WWF-France, WWF-US, WWF-Australia, WWF-Switzerland, WWF-Japan and WWF-China.

Design by Miller Design UK

WWF, 28 rue Mauverney, 1196 Gland, Switzerland. Tel. +41 22 364 9111 CH-550.0.128.920-7

All rights reserved.

For contact details and further information, please visit our international website at wwf.panda.org/deforestationfron
A HEALTHY PLANET BEGINS WITH HEALTHY FORESTS AND PEOPLE

Last year brought a profound realization that our health as individuals and as a society is deeply connected to the health of nature and the many services it provides. The spread and emergence of zoonotic diseases such as Covid-19 is yet another tragic consequence and indicator of the accelerating pressure we’re putting on natural systems, and the precipitous loss of nature driven by our current unsustainable development models.

Forests are a lifeblood of our economies and our health – from the air we breathe to the wood we use. Covering nearly one-third of the Earth’s land area, forests are home to more than half of the world’s land-based species and are the source of 75% of the world’s freshwater. More than a billion people live in and around forests, and they are the physical and spiritual home to many indigenous peoples and local communities. Forests are key carbon sinks – tropical forests alone store seven times more carbon than humanity emits every year and draw down up to 1.8 gigatonnes of carbon annually.

Yet forests today are in crisis, devastated by fires, converted and degraded for agriculture, for fuel and for timber. The mismanagement of the world’s forests is ramping up carbon emissions, ravaging biodiversity, destroying vital ecosystems, and affecting the livelihoods and wellbeing of local communities as well as societies globally. And the situation is getting worse. The world’s current unsustainable food systems mean that instead of repurposing degraded land for sustainable agricultural use, forests, savannahs and grasslands continue to be destroyed.

Deforestation and forest degradation are major drivers of zoonotic diseases. When healthy, forests are a buffer against diseases like Covid-19. But when forests are under attack, their safeguards are weakened, leading to a spillover of diseases.

It’s time to value what nature provides to us, and a key focus for that action has to be our forests. As this report shows, we need collective action to implement tailored and integrated solutions that work for people and nature. And this shift needs to happen across the chain – from the countries that are home to forests to countries where consumption patterns and lifestyles are contributing to deforestation.

All this lends further weight to the need for a New Deal for Nature and People that puts nature on a path to recovery by 2030 and sets us on course to achieve real sustainable development, and a carbon-neutral, nature positive, equitable society. Among other goals, we’re calling for an end to the loss of natural spaces like forests, and measures to halve the negative impacts of production and consumption.

We know what has to be done: protect critical biodiversity areas and sustainably manage forests, halt deforestation and restore forest landscapes, recognize and protect the tenure rights of indigenous peoples and local communities, support local people to build sustainable livelihoods, enhance landscape governance, and transform our economies, food and financial systems to better account for the value of nature. With a strong enough global coalition of the willing – governments, businesses, local communities, Indigenous Peoples, civil society organizations and consumers – we can do it.

Let’s use this crisis as a wake-up call to halt nature loss, and safeguard forests, one of our world’s most precious resources.

Marco Lambertini,
Director General
WWF International
Aerial view of the Ajaú River crossing at Chiribiquete National Park in the Colombian Amazon, Colombia.
The causes, pace and magnitude of deforestation and forest degradation have changed over time. The way that different causes of deforestation link together and the effects they have on forests varies across regions.

Globally, a multitude of approaches have been implemented to halt deforestation and forest degradation. While progress has been made in halting forest loss and degradation, both continue at alarming rates.

This report provides a comprehensive analysis of deforestation connecting drivers and responses globally by taking a closer look at 24 “deforestation fronts” – places that have a significant concentration of deforestation hotspots and where large areas of remaining forests are under threat. Over 43 million hectares were lost in these fronts between 2004 and 2017, an area roughly the size of Morocco.

The analysis presented here focuses on the tropics and sub-tropics, which accounted for at least two-thirds of global forest cover loss from 2000 to 2018 and where forest fragmentation is significant. Nearly half of the standing forests in these 24 deforestation fronts have suffered some type of fragmentation.

Deforestation tends to oscillate over time. Recent trends indicate that deforestation will persist in these fronts unless there is collective action and more integrated approaches tailored to each front. To be more effective, the different responses to halt deforestation and forest degradation have to reinforce each other.
Linking drivers and responses

The following framework shows the links between drivers of deforestation globally and the existing approaches to address them. How these approaches address drivers plays an important role in shaping the dynamics of deforestation fronts, which are at the centre of this analysis. Assessing the socio-environmental impacts of deforestation in these fronts is beyond the scope of this analysis.

Expansion of commercial agriculture (both large and small scale) and tree plantations are by far the greatest drivers of deforestation, with land speculation playing a strong role in several local contexts. Infrastructure and extractive activities, particularly the expansion of mining, are increasingly important drivers. These drivers take different shapes across locations and change over time.

Multiple approaches and responses have emerged from state and non-state actors to tackle deforestation. Some have worked better than others, yet all have limits. Acknowledging the potential and limits across approaches and responses is critical, as well as the synergies that are needed for responses to be more effective to tackle deforestation and forest degradation while avoiding negative social impacts, and achieving more inclusive and equitable outcomes.

Our findings are designed to help policy-makers, the corporate sector, civil society organizations and anyone working to halt and reverse deforestation better understand what approaches are needed to have lasting impact at scale.

Area-based responses – such as protected & conserved areas, recognition of indigenous peoples and local communities (IPLC) tenure rights and moratoria on conversion of forestlands – can be effective in preventing the loss of threatened forests but don’t help stop deforestation beyond their own boundaries and have different social implications. In turn, commodity or sector specific responses like voluntary certification, payments for environmental services (PES) and deforestation-free supply chains are important but thus far have had limited impact at scale. Additional integrated approaches are emerging motivated by result-based payments for reducing deforestation as well as jurisdictional and landscape approaches. The latter leverage the power of markets and finance but still require active state intervention at the national and sub-national levels and public-private-people partnerships, ensuring the conditions for wider participation of local stakeholders, including IPLCs.

More ambitious action is needed to build on existing responses across scales and within landscapes, while improving conditions for wider uptake of solutions that are more effective to reduce deforestation and forest degradation, with considerations of social inclusion and equity. Ultimately though, real impact will come from transforming our economies, and food and financial system and development paradigm shifts to place nature and people at the centre.
Over 43 million hectares were lost in these deforestation fronts between 2004 and 2017, an area roughly the size of Morocco.

Most forest loss is clustered in 24 deforestation fronts across Latin America, sub-Saharan Africa, Southeast Asia and Oceania. Several appeared in WWF’s previous analysis in the 2015 Living Forests Report, including the Amazon, Central Africa, Mekong and Indonesia. In addition, new fronts have appeared in West Africa (e.g. Liberia, Ivory Coast, Ghana), East Africa (e.g. Madagascar) and Latin America, including the Amazon in Guyana and Venezuela and the Maya Forest in Mexico and Guatemala.

The 24 deforestation fronts cover an area of 710 million hectares. Half of this area is currently forested (377 million hectares or about a fifth of the world’s total forest area in the tropics and sub-tropics), with primary or intact forests making up around two-thirds (256 million hectares). Over 10% of the forest area in the deforestation fronts, about 43 million hectares, was lost within the boundaries of these fronts between 2004 and 2017.

Nearly half of the standing forest in these fronts – around 45% – has experienced some type of fragmentation. Fragmented areas and forest edges are more prone to fire, and are more susceptible to human intervention due to higher accessibility.

Drivers of deforestation – old and new trends

We already know a good deal about the drivers of deforestation, from agriculture and plantations to infrastructure development and extractive activities. Yet the shifting influence of these drivers over time is less well understood. These drivers tend to change depending on global market and investment trends, national political shifts, and local political economies, among others.

One common thread is the steady development of roads associated with the expansion of mining and logging that is often followed by commercial agriculture. Conversion to agriculture is also linked to climatological and topographic conditions, market logistics and land speculation that tend to persist in frontier areas. A distinctive driver of deforestation...
is cattle ranching and soy in Latin America – the former primarily in the Amazon and the latter in Cerrado and Chaco – and timber and oil palm plantations in Southeast Asia.

In Africa subsistence agriculture remains a key driver of forest loss, yet commercial agriculture tends to expand over time, accompanied by small-scale timber extraction for energy, though this is mainly associated with forest degradation rather than deforestation.

A new trend in several regions is the increasing number of smallholders growing commodity crops such as cacao, oil palm, maize and raising cattle – sometimes for export but often to fulfil a rapidly rising demand in domestic markets. Deforestation also expands in places where there is pressure from informal mining operations and expansion of human settlements.

Illegal large-scale logging, often to supply international timber markets, has also led to forest degradation, which is often followed by forest clearing. Large-scale logging, however, is slowly being replaced by informal smaller-scale timber operations linked to domestic and regional markets, mainly for fuelwood and construction. Timber extraction is also used to finance further forest clearing in some frontier areas.

The influence of indirect pressures underpinning these trends is less clear. Economic and global population growth leading to increased food consumption has led to an expansion of commercial agriculture. Growing demand also fuels land speculation and encroachment on public forestlands and lands under control of IPLCs. These trends are often accompanied by the expansion of illegal and/or informal economies, activities that in some cases tend to involve local and business elites.

In addition, governments tend to stimulate investment in agriculture and extractive industries, linking it to their objectives of economic growth, but often not taking fully into account the needs and perspectives of rural people including IPLCs, smallholder farmers and landless rural poor.
The following maps show the 24 deforestation fronts, which were identified based on emerging deforestation hotspots analysis in the tropics and sub-tropics, identifying places where deforestation significantly increased from 2004-2017. Remaining forest is shown in green. The icons indicate the direct drivers for each of the fronts: primary causes of forest loss and/or severe degradation are in red and secondary causes are denoted in orange.

For more detailed information, visit the interactive deforestation fronts dashboard here.
SOUTHEAST ASIA AND OCEANIA
18 Mekong – Cambodia
19 Mekong – Laos
20 Mekong – Myanmar
21 Sumatra – Indonesia
22 Borneo – Indonesia/Malaysia
23 New Guinea – Indonesia/PNG
24 Eastern Australia

SUB-SAHARAN AFRICA
10 West Africa – Liberia/Ivory Coast/Ghana
11 Central Africa – Cameroon
12 Central Africa – Gabon/Cameroon/Republic of Congo
13 Central Africa – DRC/CAR
14 Central Africa – Angola
15 East Africa – Zambia
16 East Africa – Mozambique
17 East Africa – Madagascar
18 Mekong – Cambodia
19 Mekong – Laos
20 Mekong – Myanmar
21 Sumatra – Indonesia
22 Borneo – Indonesia/Malaysia
23 New Guinea – Indonesia/PNG
24 Eastern Australia
Approaches to halting deforestation have evolved over time. In particular, there has been a shift from relying solely on state policies and regulations to an increased emphasis on market-based initiatives, including PES and certification schemes. Corporate commitments to zero deforestation have also been increasing, including those of financial institutions.

Approaches tend to emphasize different dimensions and goals, all of which are related to addressing deforestation and forest degradation. They have aimed at protecting the human rights of IPLCs, supporting the conservation of biodiversity-rich areas and maintenance of environmental services, as well as promoting legal production and trade, sustainable supply chains and responsible finance. Two approaches have emerged seeking to link multiple interventions. The first is REDD+, the UN-backed scheme for reducing emissions from deforestation and forest degradation. The second are jurisdictional and landscape approaches that are aimed at tackling deforestation along with achieving wider sustainable development objectives, often at sub-national or landscape scales.

The above approaches embrace different types of responses that fall under two main groups:

1. **Area-based responses** include the recognition of IPLCs land tenure rights, governance of those lands and territories, and sustainable economies within them. In addition, include other type of area-based strategies such as protected areas, moratoria, fire management and land use regulations.

2. **Sector/commodity-specific responses** include legality and assurance systems, voluntary sustainability standards and certification, zero-deforestation policies and traceability in sourcing, PES, financing for sustainable landscapes, and deforestation monitoring.

There is some overlap between these two groups of responses, since some area-based responses apply to a specific sector, while some sectoral responses focus on a particular area. Additional, yet more integrated responses include results-based payments and jurisdictional-based partnerships, both of which tend to build upon or combine various types of responses circumscribed to specific territorial boundaries.
WHAT HAVE WE LEARNED?

A number of responses have shown positive effect, with some achieving impacts at scale faster than others, but there is no certainty that these responses won’t be reversed. Therefore, they need to be accompanied by conditions that ensure their permanence in the long run (e.g. by continued political support), increase their uptake and expand their scale over time (e.g. by lowering costs, improving the sharing of benefits, or redefining market access). In addition, good monitoring systems are critical to address illegality, inadequate implementation or partial compliance and leakage (the displacement of conversion from one place to another).

Area-based approaches, including protected and conserved areas, are often effective in reducing forest loss; however, they often lack management capacity and financial resources to prove effective. Recognizing indigenous peoples and community land rights, and their local management practices and governance systems have contributed to protecting forests under effective local control. Moratoria to avoid deforestation within entire biomes has worked when accompanied by legal enforcement. These approaches, however, cannot avoid leakage into other areas.

Forest certification has been effective in improving forest management around the world; however, it was not aimed at halting deforestation, and its uptake was limited across those forest users engaged primarily in local, domestic, or regional market where certification is not demanded. Certification systems of other agricultural commodities are increasingly adopting zero-deforestation criteria, but have yet to have impact at scale in deforestation fronts.

Though zero-deforestation commitments by companies are a key step, most commercial enterprises struggle to drive a conservation agenda without supportive national laws and policies. When government policies coincide with private initiatives, major decreases in forest loss can follow, as was the case in the Brazilian Amazon – when the government was supportive of reducing deforestation and implemented laws to do so – and in parts of Indonesia. But there has to be continued commitment for long-term achievement of outcomes.

Securing provision of environmental services – mainly through payment or compensation schemes for biodiversity, carbon and water – has worked in specific places through project-based private transactions, but only on a limited scale. State-sponsored programmes reaching large numbers of farmers have overcome this limitation, but this does not always lead to additional conservation outcomes.

Initiatives such as REDD+ and jurisdictional/landscape approaches have been embraced as a way to offer integrated long-term perspectives for halting deforestation and forest degradation. REDD+ initiatives have emphasized more robust monitoring, reporting and verification in public policy, but more needs to be done to affect the political and economic forces shaping business as usual.

Jurisdictional or landscape approaches promote transitions to more sustainable and inclusive low-carbon economies in a defined area, often at the subnational level. Key factors include supporting public–private partnerships, de-risking finance schemes, advancing land-use planning, clarifying tenure and supporting land conflict resolution, facilitating wider uptake of sustainability practices and clarifying responsibilities of government bodies at the jurisdictional level. This approach is promising, and more knowledge is needed on its actual effectiveness and the challenges it faces.

Finally, the Covid-19 crisis, the implications of which are not analysed in this report, may open the door for the kind of transformational changes that have been identified as necessary for some time: a changed relationship with nature, addressing over-consumption and putting greater value on health and equity rather than the current overwhelming emphasis on economic growth and financial profits.

What we have learnt above all is that responses to address deforestation and its drivers need to be inclusive and tailored to the local and regional contexts. Solutions have been most effective when multiple response options are combined.
THE WAY AHEAD — ISSUES TO CONSIDER

While there is an urgent need to better understand what types of responses and approaches are most effective in different deforestation fronts and the enabling factors that have to be in place, we can draw some general lessons:

- Responses to address deforestation and its drivers need to be tailored to the local and regional specific contexts, and must be inclusive and adaptable over time.

- There is no one-size-fits-all approach – solutions have been most effective when multiple responses tend to reinforce each other, and often involving public and private partnerships.

- A balance is needed between the stringency of regulations and standards, and the capacity of producers, particularly local forest users and smallholders, to follow them.

- Illegal and shadow economies, and corruption, persist in undermining sustainability – there is an urgent need for greater accountability and transparency.

- Responses in consuming countries have to engage more meaningfully with stakeholders in producing countries to develop workable long-term solutions while avoiding negative social impacts.

- In looking for lasting solutions at scale, responses need to consider specific locations or fronts (considering leakage effects) as well as timing (urgency, duration).

- Empowering indigenous peoples and local communities should become a priority, as well as supporting their efforts to secure the tenure of their ancestral lands and safeguard their cultures.

- There is a need to overcome sectoral silos and misalignment between national and subnational levels when devising integrated extension programmes and more targeted incentives to keep forests standing.

- Protecting forests should not lead to the conversion of other natural ecosystems (e.g. grasslands and savannas) – avoiding leakage is a must and embracing wider landscape approaches.

- More ambitious and inclusive public-private-people partnerships are needed to set up and embrace targets across ecosystems and entire ecoregions that actively involve the participation of indigenous peoples and local communities.
1. INTRODUCTION: OBJECTIVES AND AUDIENCE

The report has three objectives:

1. It provides arguments to support a range of ongoing national and international policy processes aimed at addressing deforestation and forest degradation, to highlight the importance of adopting more comprehensive approaches and ambitious targets for forest conservation.

2. It speaks to policy-makers, the corporate sector, civil society organizations and social organizations, identifying leverage points in efforts to halt and reverse global forest loss where efforts to introduce sustainable practices are needed, particularly in landscapes and supply chains.

3. It provides knowledge for conservation practitioners to better target interventions that are adapted to local realities to effectively halt deforestation and forest degradation.

While forests covered about 50% of the earth’s land area 8,000 years ago, today only 30% of land is forested.
1.1 DEFORESTATION: A WICKED PROBLEM

Human pressure on forests is a persistent trend across the globe yet has changed in pace and magnitude over time [11]. Forest cover loss has led to loss of biodiversity and ecosystem services and contributed to climate change [12–13]. While forests covered about 50% of the Earth’s land area 8,000 years ago, today only 30% of land is forested [4]. Forest cover loss has human and natural causes, but the major driver is human activities that lead to a permanent conversion of forests to other land uses, or deforestation in the strict sense.

Deforestation is often linked to expanding commercial agriculture to meet increasing consumption [5–6], along with subsistence agriculture to support the livelihoods of a large number of rural people [7–8]. Deforestation tends to be preceded by forest fragmentation that leads to forest degradation and loss of wildlife, a long-lasting trend in many forests [3]. Forest degradation can also result from unsustainable logging and/or fires [9]. Forest degradation and deforestation both tend to reflect wider political, social and economic transitions facing societies such as urbanization, commodification, globalization, agricultural intensification and, lately, growing environmental effects linked to climate change.

Different theories have emerged to explain the causal mechanisms of forest cover change, including theories of land-use spillovers and theories of land-use transitions [10]. In addition, the “forest transition” theory is an analytical framing to explain dynamics in forest cover loss and gains [11].

Deforestation tends to be preceded by forest fragmentation that leads to forest degradation and defaunation, a long-lasting trend in many forests [3].

and suggests that forests within some specific administrative jurisdictions or landscapes can shift from shrinking to expanding over time [14]. Deforestation, however, is also seen as a “wicked problem” since it has multiple and evolving facets, is triggered by factors operating at different scales, and cannot be overcome with single-oriented responses [13]. For example, efforts to halt deforestation in one place may lead to growing deforestation somewhere else, something known as leakage [14].

There is a significant body of work aimed at understanding forest cover loss and deforestation dynamics, and the factors shaping them. Understanding about the responses or actions and interventions put in place by both state and non-state actors aimed at halting deforestation is also rapidly developing. The analysis of deforestation drivers ranges from global studies looking at the spatial influence of drivers [15] to other studies assessing the links between consuming and producing countries [16, 17]. These studies also focus on context-specific drivers and interactions in specific places, which have also been captured in a growing number of meta-analyses of deforestation drivers [18, 19]. The methods and sources of information have evolved and are getting more sophisticated, and while there is better understanding about deforestation drivers and trends, more knowledge is needed to understand the effectiveness of multiple responses. Nonetheless, despite knowledge about the drivers and types of responses that should be in place, deforestation continues.

Deforestation tends to oscillate over time. It has proved difficult to reduce and halt and even more difficult to reverse trends of forest loss, particularly in the tropics. In the rare cases where deforestation has been significantly reduced it has proven difficult to sustain those trends over time, which suggest that long-term efforts are needed. Progress in reducing deforestation, has often been associated with a combination of different responses, which can take place at different levels and involve collaboration between public and private actors.

Forest degradation and deforestation both tend to reflect wider political, social and economic transitions facing societies such as urbanization, commodification, globalization, agricultural intensification, and lately growing environmental effects linked to climate change.
1.2 A FRAMEWORK LINKING DRIVERS AND RESPONSES

Drivers and responses interact among each other. Drivers’ impact on forests is mediated by the influence of responses, and responses also evolve to address the impact of shifting drivers. Figure 1.1 offers a framework—that underpins this report’s structure—linking drivers and responses. Both play a role in shaping the dynamics of deforestation fronts, which is at the centre of our analysis. The framework shows that direct (proximate) drivers (i.e. agriculture, extractives, infrastructure) are influenced by indirect (underlying) drivers (i.e. demographic, technological, political, economic, environmental). These interactions result in specific pressures shaping the expansion of deforestation fronts. The drivers are counteracted by different types of responses (area-based and commodity or sector specific) embraced by different approaches (single-oriented and integrated). The specific impact of drivers and the action of responses in any deforestation front is associated with context-specific land-use decisions influenced by some mediating factors operating in each front.

Deforestation and forest degradation are the two key ingredients of deforestation fronts, which are the places with the largest concentration of forest loss or severe degradation in the world. An earlier WWF analysis of deforestation fronts in 2015[^20] used a predictive approach, suggesting that the fronts were the places of projected deforestation from 2010 to 2030. This report focuses on past deforestation during the last 18 years, while offering a more specific understanding of these different fronts.

Deforestation is the permanent conversion of forest to another land use or significant long-term reduction of tree canopy cover. This includes conversion of natural forest to tree plantations, agriculture, pasture, water reservoirs and urban areas; but excludes logging areas where the forest is managed to regenerate naturally or with the aid of silvicultural measures[^20].

Forest degradation results from changes within forests that negatively affect the structure or function of the stand or site, and thereby lower the capacity of forests to supply products and/or ecosystem services[^20]. There are many aspects in forest degradation[^20].

![Figure 1.1 Analytical framework linking drivers of and responses to deforestation](image-url)
The drivers causing deforestation and forest degradation are diverse, operate at multiple scales, and their specific influence may change over time, especially during the evolution of particular deforestation fronts that are preceded by degradation. Here we define **drivers** as all the factors natural and anthropogenic that, directly or indirectly, contribute to forest cover loss or forest degradation [22], and **pressures** are the specific manifestation of these drivers.

- **Direct or proximate drivers** are those factors that have direct physical or behavioural impact on forests leading to forest degradation or conversion of forests to other land uses. They are often associated with four broad groups of drivers, namely: agriculture and timber plantations, extractive activities, infrastructure and other factors such as fire.

- **Indirect or underlying drivers** are those factors that have a more diffuse influence on degradation and deforestation by altering and influencing direct drivers. The indirect drivers comprise demographic, technological, political, economic and environmental factors.

The approaches aimed at reducing forest degradation and halting deforestation, or more widely, governing land-use decisions that influence land use change in deforestation fronts, are multiple and originate from actions involving either governments, business sector, civil society organizations, and social organizations. At least six **single-target oriented approaches** have been implemented with effects on forest conservation and degradation, which are not exclusive. These approaches are as follows:

- Securing the rights of indigenous peoples and local communities (IPLC)
- Securing conservation of biodiversity-rich forest areas
- Ensuring legality of production and trade
- Maintaining the provisioning of environmental services
- Enhancing sustainability of supply chains
- Mainstreaming responsible finance.

Drawing on these, and by acknowledging their potential and limits, two more integrated approaches have emerged: (1) integrated policy frameworks under **REDD+** (Reducing emissions from deforestation and forest degradation, plus the sustainable management of forests, and the conservation and enhancement of forest carbon stocks), and (2) **jurisdictional approaches** seeking to align interests and coordinate actions among governments, businesses, local communities, and NGOs toward shared conservation, supply chain sustainability, and low-carbon development goals.

These approaches, privilege differentiated theories of change and levers of change, and embrace different types of actions and/or interventions in support of conservation or halting deforestation and forest degradation by using incentives and sanctions. We label these actions and/or interventions as responses. The responses embraced by the different approaches can be grouped in two:

- **Area-based responses**, primarily aim to conserve primary or intact forest landscapes and to avoid unsustainable forest use by defining the extent and condition of land to be dedicated to specific uses (e.g. protected and conserved areas), tenure regimes (e.g. indigenous peoples and community lands), or specific land uses or management systems (e.g. moratoria, fire management, land zoning). These can be subject of targeted support and monitoring.

- **Commodity or sector-specific responses**, rely mainly on the capacity to enforce specific economic activities, and the uptake and mainstreaming of sustainability practices in supply chains, trade and finance around specific commodity crops or sectors. These responses comprise those aimed at improving the quality of management (e.g. certification, traceability), and monetary incentives for rewarding conservation outcomes (e.g. PES, sustainable finance).

Deforestation and forest degradation have differentiated social and environmental impacts across the different fronts, which depend on the specific drivers on place, and are influenced by the type of responses adopted. Looking at the socio-environmental impacts of deforestation is beyond the scope of this analysis.

Structure of the report

This report is organized in five sections including this introduction. Section 2 identifies 24 deforestation fronts across Latin America, sub-Saharan Africa, Southeast Asia and Oceania based on a deforestation hotspots analysis for the period 2004-2017, which updates a previous deforestation fronts analysis conducted by WWF in 2015. Section 3 provides a comparative analysis of drivers and Section 4 of responses across deforestation fronts. Finally, Section 5 suggests some ways forward in support of more integrated solutions to tackle deforestation and forest degradation that build on current efforts while asking for wider transformative change. A detailed description of the methods used in the analysis is provided in the Appendix. The report also includes 24 factsheets that provide key data and describe specific drivers and responses, outcomes achieved and recommends future actions for each of the identified deforestation fronts.
2. DEFORESTATION FRONTS

KEY MESSAGES

From 2000 to 2018 two-thirds of total global forest cover loss occurred in the tropics and sub-tropics. There is a higher total annual forest cover loss in the tropics, and higher annual rates of loss in the subtropics.

We identified 24 deforestation fronts across 30 countries, comprising over half (52%) of the total deforestation in Latin America, sub-Saharan Africa, Southeast Asia and Oceania. Thus, there is also scattered deforestation outside the boundaries of these deforestation fronts.

Nine of the deforestation fronts are in Latin America, eight in Africa and seven in Asia and Oceania. In some the deforestation rate is declining, while others show a moderate or rapid increase.

The location of the deforestation fronts is broadly similar to the last WWF analysis in 2015, although several new fronts have emerged, and deforestation tends to be more widespread than acknowledged before.

Bornean elephants walk through an oil palm plantation and eat the trunks of felled old oil palm trees in Sabah, Borneo
© Chris J Ratcliffe / WWF-UK
2.1 SETTING THE SCENE

Important progress has been made in understanding global forest cover trends based on increasing availability of data, but consistent and reliable estimation of global forests and/or tree cover loss and degradation remains difficult to obtain[29]. The challenge of producing robust estimates relates not only to how forests are defined[24], but also to the methods, timeframes and sources of information that are used, as well as whether the analysis takes into account forest gains.[25,27]. Measuring forest degradation is even more challenging, since definitions vary from those that only look at the productive capacity of forests, carbon stocks or canopy cover[32] to others acknowledging that forest degradation is a multi-dimensional phenomenon[21]. We focus our analysis on deforestation fronts within and across countries, acknowledging that deforestation and forest degradation are a global problem unfolding differently across regional contexts.

Two data sources of forest cover change are often cited: the UN Food and Agriculture Organization (FAO) Global Forest Resources Assessment (FRA) and the Hansen/UMD/Google/USGS/NASA tree cover loss database used by Global Forest Watch (Hansen/GFW). Hansen/GFW indicates growing trends of forest tree loss, while FAO FRA suggests deforestation is high but has decreased over time (see Box 2.1 for a comparison).

Our analysis, given its main goal of assessing deforestation dynamics across deforestation fronts, requires a dataset that allows for comparison across deforestation fronts. We derived our deforestation fronts based on Emerging Hotspot Analysis using Terra-I datasets that detects land-cover changes in Latin America, Africa, Asia and Oceania from 2004 to 2017. We selected this dataset based on its temporal and spatial resolution and because it allows identification of vegetation loss due to anthropogenic causes (see Appendix 1 for a description of methods). In addition, to improve our current understanding of deforestation from 2000-2018 and forest cover dynamics, we produce forest cover maps for years 2000 and 2018 by looking across five different datasets:

1. ALOS PALSAR, forest and non-forests for non-boreal forests for 2007-2017[31]
2. European Space Agency (ESA) Climate Change Initiative (CCI) global land cover map for 1992-2015[34]
4. Hansen/GFW examining tree cover loss for 2001-2012, Landsat derived[36], with updated data from 2012 to present[37]
5. Terra-I, MODIS derived, detecting land-cover changes in Latin America, Africa, Asia and Oceania from 2004 to present[38]

A detailed description of the methods followed to conduct this analysis is presented in Appendix 2. Additional fragmentation analysis was conducted assessing the forest maps for 2000 and 2018 (see Appendix 3 for a description of methods). We estimated forest cover and deforestation dynamics across all deforestation fronts identified.

Deforestation in our analysis consists of observations (pixels) changing from forest to non-forest at any time between 2000 and 2019, but does not look at tree gains in the same period. Tree cover loss is “defined as a stand-replacement disturbance, or a change from a forest to non-forest state” and can represent deforestation (conversion of natural forests to other land uses), or factors such as mechanical harvesting, fire, disease or storm damage[39]. According to Hansen/GFW, total annual tree cover loss almost doubled from 13.6 million ha in 2001 to 25.5 million ha in 2018, reaching over 30 million ha in 2016 and 2017. Total loss was 370 million ha from 2001 to 2018, equivalent to 21.8 million ha/year. Over a third of total loss was in the tropics (35%), followed by losses in boreal (27%), temperate (20%) and sub-tropical forests (18%)[37]. Additional analysis differentiates primary humid tropical forests loss[39].

Recent updates indicate that 11.9 million ha of tree cover was lost in the tropics in 2019, of which 3.8 million ha were humid primary forests[39]. In contrast with FAO, by including factors like plantation management and natural fires, the Hansen/GFW figures estimate a greater area of natural forest loss.

Box 2.1 Two contrasting perspectives of forest loss: Hansen/GFW and FAO FRA

The FAO FRA measures forest change since 1990, assessed every five years[30], while Hansen/GFW looks at tree cover loss since 2001[29]. The FRA is based on country assessments of land use including areas cleared of trees but expected to be reforested under a given management regime, while Hansen/GFW measures actual forest presence based on tree height and percent of canopy cover at 30m spatial resolution detected from remote sensing.

The latest FAO FRA 2020 indicates that the world is still losing forests, but the pace of loss has slowed[30]. According to the FRA, forest area is 4.06 billion ha in 2020 (or 31% of the total land area), and 420 million ha of forests have been lost since 1990. Average annual deforestation, according to FRA revised estimates, is still high but has decreased from 16 million ha/year in 1990-2000 to 15 million ha/year in 2000-2010, 12 million ha/year in 2010-2015 and 10 million ha/year in 2015-2020[30]. FAO estimates suggest that forest gains have increased over time – although slowing in recent years – leading to a declining net forest loss. The rate of net forest loss declined from 7.8 million ha/year in 1990–2000 to 5.2 million ha/year in 2000–2010 and 4.7 million ha/year in 2010–2020. Africa, followed by South America, had the largest annual rate of net forest loss in 2010–2020, while Asia had the highest net gain of forest area. However, many of these gains will be from plantations or secondary forests while the world is still losing natural forests.

Hansen/GFW suggests increasing tree cover loss from 2001 to 2019, but does not look at tree gains in the same period. Tree cover loss is “defined as a stand-replacement disturbance, or a change from a forest to non-forest state” and can represent deforestation (conversion of natural forests to other land uses), or factors such as mechanical harvesting, fire, disease or storm damage[39]. According to Hansen/GFW, total annual tree cover loss almost doubled from 13.6 million ha in 2001 to 25.5 million ha in 2018, reaching over 30 million ha in 2016 and 2017. Total loss was 370 million ha from 2001 to 2018, equivalent to 21.8 million ha/year. Over a third of total loss was in the tropics (35%), followed by losses in boreal (27%), temperate (20%) and sub-tropical forests (18%)[37]. Additional analysis differentiates primary humid tropical forests loss[39]. Recent updates indicate that 11.9 million ha of tree cover was lost in the tropics in 2019, of which 3.8 million ha were humid primary forests[39]. In contrast with FAO, by including factors like plantation management and natural fires, the Hansen/GFW figures estimate a greater area of natural forest loss.
to 2018. This is a conservative analysis since it accounts for forest loss only in places where at least two datasets agreed, and because it uses a spatial resolution of 250m given the original resolutions of the datasets incorporated. This resolution was also chosen on the principle that forest areas should be a minimum of 250x250m (6.25 ha) to contain the functional attributes of a forest (e.g. species distribution, ecology, ecosystem services), rather than including individual trees or small groups of trees\cite{38}. Furthermore, it should be noted that this analysis underestimates the conversion of dry forests or woodlands, and other natural ecosystems (e.g. grasslands) that are also under large pressure\cite{39}.

Forest degradation is a multi-dimensional problem. Here we use forest fragmentation as one proxy for forest degradation that can easily be detected through remote sensing; while this is a critical element of forest degradation it does not capture all its aspects\cite{40}. The changes in spatial pattern and structure by fragmentation of forest into smaller patches or “islands” damages forest functions (e.g. carbon storage, water provision, maintenance of species habitat)\cite{41-43}. Several of these impacts are created by changes at the forest edges, which include changes in exposure to different microclimates, fire frequencies, wind speeds, and other forms of fragmentation-mediated mortality\cite{44}. The increasing isolation of forest patches from each other or from core forest contributes to long-term changes in biodiversity, including species richness and productivity, creating fundamental and sometimes irreversible changes in forest landscapes\cite{41}.

Our analysis suggests that in the period from 2000 to 2018 about two-thirds of total deforestation took place in tropical and sub-tropical biomes, followed by boreal and temperate forests. A portion of the loss, particularly in temperate and boreal forests, will not be permanent and might refer to other types of natural forest disturbances produced by insects, fire and severe weather, as well as by felling of plantations or semi-natural forests as part of forest management. A higher annual average of total deforestation is observed in the tropics, and annual deforestation rates are higher in the sub-tropics. Annual deforestation rates are similar in South America and Africa, followed by those in Asia. Most tropical deforestation is in South America and Asia, while subtropical forest cover loss is mainly in South America and Africa. About 26% of total forest cover loss takes place in core forest, which we label “primary deforestation”, and the remaining 80% took place in the edge and patched forests, which is labelled as “secondary deforestation”.

The overall increase of fragmented forest area during 2000-2018 is larger than deforestation during the same period, except in subtropical forests. Worldwide, the total area of “primary degradation” (or fragmentation of core forests into forest with more edges) is more than four times that of “secondary degradation” (or the conversion of edge forests already fragmented into more fragmented classes, which are more accessible and easier to deforest)\cite{41}. This indicates that forest fragmentation leads to a significant reduction in intact forest ecosystems and may stimulate further forest conversion to other land uses, or make those forests more vulnerable to fires.

Figure 2.1 Forest cover loss and forest degradation by biome in the period 2000-2018
Deforestation fronts are the places at imminent risk of large-scale deforestation. A WWF (2015) report *Saving Forests at Risk*[^20] identified 11 deforestation fronts suggesting that they would account for more than 80% of projected deforestation between 2010 and 2030, or up to 170 million ha. The current analysis provides new insights in these deforestation fronts dynamics by using an approach that differs in two major ways from the previous one. Firstly, it draws primarily on empirical evidence of deforestation derived from an Emerging Hotspot Analysis. Secondly, it looks at past and current forest loss due to human activities in places where there is still a significant area of remaining forests but does not include any predictive analysis. Nonetheless, since deforestation tends to happen contiguous to previously deforested areas, it is likely that deforestation will continue in these fronts.

We follow a two-step approach to revisiting the deforestation fronts analysis. First, we undertook an Emerging Hotspot Analysis, which is increasingly used in assessments of forest cover loss and deforestation, particularly at national scales, but with scalability potential to smaller or larger regions[^45]. Our analysis used 10km2 hexagons within country boundaries, based on the time series of the Terra-i data[^37] for Latin America, Africa, Asia and Oceania for the period from 2004 to 2017 for which validated data was available at the time of writing. We then used this analysis, complemented by a literature review and expert opinion, to draw the boundaries of 24 deforestation fronts in the locations with the largest concentration of deforestation.

We identified 24 active deforestation fronts, nine in Latin America, eight in Africa, and seven in Asia and Oceania. See Figure 2.2 for the location of these fronts, and Figure 2.3 for information on average annual deforestation rates.

These deforestation fronts comprise over half (52%) of the total deforestation that took place in Latin America, sub-Saharan Africa, Southeast Asia and Oceania, or 59% if countries where timber plantations tend to dominate are excluded (taking as reference deforestation estimates from Terra-i during the period 2004-2017). This suggests that, despite the importance of these fronts, a significant portion of deforestation is widespread and not only clustered in these identified hotspots.

Compared with analysis undertaken in WWF’s 2015 assessment, the location of several fronts is the same (e.g. Amazon, Central Africa, the lower Mekong, Indonesia), but many have kept expanding and taking over forestlands. In addition, new fronts not identified in previous analysis have appeared in West Africa (e.g. Angola), Madagascar and Latin America, including the northeast portion of the Amazon in Guyana and Venezuela and the Maya Forest in Mexico and Guatemala (see Box 2.2).

Box 2.2 Comparison of past and present deforestation fronts

WWF’s 2015 *Saving Forests at Risk* report[^20] identified 11 deforestation fronts, in contrast with the 24 deforestation fronts shown in Figure 2.1. The 2015 report considered fronts at the regional level. Some of these have now been subdivided into more uniform territorial units, and a few more deforestation fronts have emerged or been recognized.

- The Amazon, which was a single deforestation front in the 2015 analysis, has been subdivided into five different fronts in 1. Brazil, 2. Colombia, 3. Peru, 4. Bolivia, 5. Venezuela and Guyana.
- The Lower Mekong has been subdivided into three fronts: 1. Cambodia, 2. Laos, and 3. Myanmar.
- East Africa has been subdivided into 1. Zambia and 2. Mozambique.
- Deforestation fronts that were not part of the 2015 analysis are those in 1. Angola, 2. West Africa, 3. Madagascar, and 4. the Maya Forest in Mexico and Guatemala.
Over 43 million hectares were lost in these deforestation fronts between 2004 and 2017, an area roughly the size of Morocco.

LATIN AMERICA
1. Amazon – Brazil
2. Amazon – Colombia
3. Amazon – Peru
4. Amazon – Bolivia
5. Amazon – Venezuela/Guyana
6. Gran Chaco – Paraguay/Argentina
7. Cerrado – Brazil
8. Chocó-Darién – Colombia/Ecuador
9. Maya Forests – Mexico/Guatemala

Figure 2.2. Deforestation fronts in Latin America, sub-Saharan Africa, Southeast Asia and Oceania
SUB-SAHARAN AFRICA
10 West Africa – Liberia/Ivory Coast/Ghana
11 Central Africa – Cameroon
12 Central Africa – Gabon/Cameroon/Republic of Congo
13 Central Africa – DRC/CAR
14 Central Africa – Angola
15 East Africa – Zambia
16 East Africa – Mozambique
17 East Africa – Madagascar

SOUTHEAST ASIA AND OCEANIA
18 Mekong – Cambodia
19 Mekong – Laos
20 Mekong – Myanmar
21 Sumatra – Indonesia
22 Borneo – Indonesia/Malaysia
23 New Guinea – Indonesia/PNG
24 Eastern Australia
Deforestation continued to expand in many of the fronts identified in WWF’s 2015 assessment. Deforestation trends tend to oscillate over time. The Brazilian Amazon is a case in point: according to official sources, annual deforestation dropped from a peak of 2.8 million ha in 2004 to 457,000 hectares in 2012, but has shown a growing trend since then surpassing 1 million ha in 2019. In contrast, in Indonesia, according to official statistics, deforestation has oscillated but the trend indicates a downward trajectory. The country’s total net deforestation was over 1 million ha per year in early 2000s, it dropped below 500,000 ha per year from 2009-2011 to increase again to 1 million ha annually in 2014-15. It was estimated to be 439,000 ha in 2017-18.

Our assessment of deforestation based on five datasets for the period 2000-2018 indicates that nine deforestation fronts underwent high rates of deforestation, including several in Latin America (Brazilian Amazon and Cerrado, Bolivian Amazon, Paraguay and Argentina), Madagascar in Africa, and Sumatra and Borneo in Southeast Asia. Ten fronts experienced medium deforestation including some countries in sub-Saharan Africa (CAR, DRC, Angola, Zambia, Mozambique), the Amazon (Colombia, Peru), Lower Mekong (Laos, Myanmar) and Eastern Australia. Five fronts faced low deforestation, including in Central Africa (e.g. Cameroon, Gabon, Republic of Congo), New Guinea and Chocó-Darién (Figure 2.3).

When looking at annual deforestation trends based on Terra-i data for 2004-2017, a moderate increase with oscillations is observed in 10 fronts (mainly those located in the western Amazon, Mesoamerica and East Africa), and a rapid increase with oscillations in 11 fronts, mainly those located in Central Africa and Lower Mekong. There was a decline of deforestation in three deforestation fronts (Brazilian Amazon, Chocó-Darién, Cameroon) during the second half of the 2000s until the early 2010s but it has increased more recently. Figure 2.4 shows key additional information on these fronts regarding type of remaining forests, annual change of deforestation, and burned areas.

The 24 deforestation fronts cover an area of 710 million ha. Half of this is currently forest (377 million ha), out of which two-thirds (256 million ha) is primary/intact forest (68% of total forest area in 2018). About 10% of the forest cover in 2000 was lost within the boundaries of these deforestation fronts between 2004 and 2017. More than a half of the standing forest is core forests (55%), and the rest (45%) has undergone some type of fragmentation. All fronts saw an increase in fragmentation in 2000-2018, but the rates were highest in Madagascar, West Africa, CAR and DRC, Mayan Forest and Sumatra.

About 73 million ha, or almost one-sixth of the total forest area in 2000, was burnt at least once in the period from 2002 to 2019. This contributes to further forest degradation that may end up in deforestation in areas facing pressure from agricultural expansion. Higher cumulative burned areas are observed in the Brazilian Amazon, Central Africa, East Africa and Eastern Australia, although fronts with dry forest vegetation and woodlands (e.g. Chaco, Cerrado, Angola, Zambia, Mozambique) have experienced a higher incidence of burning relative to their forest area in 2000.
Figure 2.3 Type of deforestation fronts according to average annual deforestation rates in Latin America, sub-Saharan Africa, Southeast Asia and Oceania.

Average annual deforestation in the period 2000-2018 for the whole deforestation front:
- Low <0.1%
- Medium 0.1-0.5%
- High >0.5%

Deforestation 2004-2017 as a percentage of forest area in 2000

Figure 2.4 Comparison of key facts across 24 deforestation fronts in Latin America, sub-Saharan Africa, Southeast Asia and Oceania

Notes:
3. DRIVERS OF DEFORESTATION

KEY MESSAGES

Drivers of deforestation are not static, and the influence of different drivers and actors tends to change over time and across regions mainly depending on political and market shifts.

Among the direct drivers, commercial agricultural expansion continues to have the largest influence on deforestation, mainly in Latin America and Asia, while the contribution of smallholders keeps growing. In Africa small-scale agriculture remains the primary driver of deforestation.

Logging has generally declined as a primary driver of forest degradation and loss, although it still often precedes clearing for other purposes, and both legal and illegal logging remain significant factors in some countries.

Deforestation is most likely in places where there is a growing expansion of road networks connecting production zones to export and domestic markets. But fronts also expand where there is pressure from informal mining operations and expansion of human settlements.

Additional pressures on forests originate from encroachment on public lands and IPLCs ancestral lands driven by speculation, sometimes linked to corruption, and taking advantage of unclear tenure rights and weak governance.

These pressures are amplified by population growth and expansion of demand for timber, food and materials. State needs for fiscal earnings stimulate expansion of roads and agriculture, and mining and settlements in frontier lands.
3.1 DRIVERS OF DEFORESTATION — TAKING STOCK

A significant body of work is available to assess the drivers of forest loss at multiple scales from local to global, and several frameworks have been put together linking different types of drivers. This work has helped to understand the taxonomy of drivers, the multiple interactions, and their specific contributions to either stimulating or constraining deforestation. The most common understanding classifies drivers of deforestation as direct (or proximate) and indirect (or underlying)\[^{[19, 50-52]}\]. Indirect drivers, such as population growth, increases in demand, technical changes and policy shifts, interact in multiple ways to create pressures on forests\[^{[50]}\]. Their impacts are not clear-cut and may lead to contradictory outcomes by either stimulating or constraining deforestation\[^{[53]}\], so their interactions and effects have to be understood across specific contexts. Indirect drivers affect the direct drivers shaping specific forest uses (e.g. logging, timber plantations) and forest conversion to agriculture or other land uses (e.g. mining), as depicted in Section 1, Figure 1.1.

A recent meta-analysis on the drivers that either trigger or stop deforestation\[^{[18]}\] argues that deforestation is more likely to occur in places where opportunities for conversion to agriculture are higher, based on the interaction between favourable climatological and topographic conditions as well as transport and access to markets. Causal links are hard to prove, although higher populations tend to drive deforestation. In addition, deforestation has been associated with growing global food demand and shifts in diets, particularly due to an increase in meat-eating\[^{[54]}\]. However, only part of this increased demand places pressure on tropical forests as it can be partly met by yield increases in already cleared land\[^{[50]}\]. In addition, only a portion of supply coming from cleared tropical forests is linked to global commodity markets, since another portion fulfils the demand from domestic markets, also linked to urbanization.

An estimated 29–39% of deforestation-related carbon emissions in the period 2000-2014 were driven by international trade in agricultural commodities, suggesting that a large portion is still due to domestic markets\[^{[47]}\]. Although international timber trade is significant, domestic or regional markets also make up the majority of timber consumption, often supplying wood for energy and materials for construction, again linked to the growth of cities\[^{[52]}\].

A global non-spatially explicit analysis of proximate drivers of deforestation and forest degradation in the period 2000-2010 based on 46 countries argues that commercial agriculture is the largest driver of deforestation, followed by subsistence agriculture. In addition, timber extraction and logging drives most forest degradation, followed by fuelwood collection and charcoal production\[^{[51]}\]. A global forest loss assessment in the period 2001-2015 attributes 27% to expansion of commodity production, 26% to forestry, 24% to shifting agriculture and 23% to wildfires. While some of this loss is permanent, including under commercial agriculture, some is only temporary – particularly forest loss driven by fires, shifting agriculture or forestry, where forests are expected to recover over long time horizons once human activity stops. Other studies show that, in the tropics, drivers of deforestation are regionally specific. An analysis of post-deforestation land uses in the period 1990-2000 indicates that, in Latin America, pasture was the most common land use (72%) followed by large-scale cropland (11%); in Africa, small-scale cropping is the main post-deforestation land use (61%) with a smaller role for pasture (15%); and in Asia, small-scale cropland (35%) was followed by tree crops (28%)\[^{[46]}\]. These studies tend to neglect the influence in deforestation of infrastructure and extractive activities.

Our analysis adds more granularity to the existing body of research by examining the influence of indirect and direct drivers in each of the 24 deforestation fronts. In addition, we offer a comparative analysis of the specific influence of drivers across deforestation fronts, while also capturing forest dynamics in the past 15 years. The analysis undertaken here ratifies the argument that the influence of different drivers and actors tends to change over time\[^{[21]}\] and depends on the social, political and economic characteristic of the regional contexts, which is also explained by the role of indirect drivers.
3.2. DIRECT DRIVERS AND SHIFTING TRENDS

The most common direct pressures causing deforestation and severe forest degradation can be classified in four groups:

1. Agriculture and plantations, including cattle ranching, large-scale agriculture, smallholder (cash-income and/or subsistence) farming, and (large- and medium-scale) tree plantations.
2. Extractive activities, including logging (large- and small-scale) and mining.
3. Infrastructure expansion, including transport infrastructure, hydropower plants and urban growth.
4. Others, such as fires.

The effects of these drivers are not always additive, since they interact in different ways and their influence is mediated by some context-specific factors. In addition, deforestation fronts are influenced by several other factors including local behaviours, values and beliefs, power relations, and governance, among others. They are also affected by a range of social and policy responses, whose effects are analysed in the next section. As a result, the magnitude and the relative influence of these different drivers changes over time. Figure 3.1 contains a simplified representation of the interactions among the different drivers with no distinction across regions.

Table 3.1 compiles the different direct drivers across the four broader categories for each of the 24 deforestation fronts, with colours showing their relative importance: primary causes of forests loss and/or severe degradation are in red, secondary causes in orange and less important causes in yellow. The direction of the arrows shows the increasing or decreasing trend of each specific driver since early 2000, based on a revision of literature and consultations with experts. A detailed description of these drivers is presented in the factsheets at the end of this report. It is important to highlight that in some cases (e.g. Brazilian Amazon, Bolivia, West Africa, Eastern Australia) only a select number of drivers are included in the corresponding factsheets. In addition, Table 3.1 differentiates large-scale logging and small-scale timber extraction, distinction that is not always made explicit in the factsheets (e.g. Peru, Bolivia, Maya Forests, Cameroon, Angola, Cambodia, Laos, Myanmar).

In the Amazon region—including Brazil, Colombia, Peru and Bolivia—pressures on forests originate from road expansion, yet the greater effect is likely linked to the development of local roads including logging roads. Some large-scale hydroelectric dams have been established and others are planned, along with development corridors for crop commodity production zones to reach external markets since global demand has increased its influence in shaping agricultural expansion in the region. Pasture expansion for cattle ranching is still the main driver leading to forest conversion, and while it tends to be decreasing in the Brazilian Amazon, it is still expanding in the other Amazon countries. Pasture expansion is in part due to attempts to justify land ownership for speculative rather than productive purposes. Large-scale agriculture also leads to deforestation in places with suitable soils; it tends to occupy already converted lands in places with appropriate market logistics, but it has also led to displacement of ranching into active forest frontiers, and indirectly fuels land speculation. Timber extraction, mainly small-scale illegal logging, tended to decrease in the Brazilian and Bolivian Amazon, but increased in Colombia and Peru. The effects of mining, which is widespread in the region, are more localized and have been greater as a result of informal gold mining in the Peruvian Amazon. Fires tend to follow forest conversion since they are used to remove already clear-cut trees and fallen vegetation, yet some fires also triggered forest conversion in the Brazilian and Bolivian Amazon.

The other regions in Latin America share some attributes but differ in many others. The Cerrado and Gran Chaco have faced a rapid and extensive expansion of soy production, largely driven by large- and medium-size farmers accompanied by expansion of logistic and storage and crushing facilities in response to a growing global market. Agricultural expansion linked to growing external markets for feed also triggered a very dynamic land market, including speculation and transaction brokered by “land companies”. Deforestation drivers in the Mesoamerican Maya Forest have also changed. If cattle ranching and traditional smallholder agriculture were major drivers in the past, commercial farming (especially large-scale) plays an increasingly important role. In addition, the shift from collective (sometimes customary) to more individual land tenure regimes has been associated with land purchases by large-scale producers and greater deforestation.

In Africa throughout the deforestation fronts, small-scale agriculture remains the primary driver of deforestation. Pressure from large-scale agriculture varies, from minor and possibly even declining in West Africa to playing an increasingly significant role in the Miombo forests of Zambia, Mozambique and Angola. Commercial agriculture is also increasing in the Congo Basin; it is already significant in Cameroon but remains less so in other Congo Basin countries. Fuelwood and charcoal, associated with expanding urban markets, are key drivers but mainly cause degradation rather than complete loss. Fire is also found in all the countries in the Miombo, where fire is traditionally used for the management of Miombo woodlands, yet it may lead to forest degradation. Logging occurs widely but was only considered significant in Cameroon and Angola, though small-scale logging and chainsaw milling is a factor particularly in Central African countries. Transport infrastructure, although projected to be highly significant in the future, is still generally only judged to be a minor cause of forest loss.

The Lower Mekong region has experienced steady economic growth and integration of regional and global commodity markets over the last two decades. This has spurred rapid expansion of cash crops including sugarcane, cassava and maize, as well as rubber, oil palm, nut trees and coffee. Both large-scale and smallholder farming are...
Table 3.1 Analysis of drivers for 24 deforestation fronts

<table>
<thead>
<tr>
<th>Deforestation front</th>
<th>Agriculture and plantations</th>
<th>Extractive activities</th>
<th>Infrastructure expansion</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolívia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela/Guyana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gran Chaco</td>
<td>Paraguay/Argentina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chocó-Darién</td>
<td>Colombia/Ecuador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maya Forests</td>
<td>Mexico/Guatemala</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Africa</td>
<td>Liberia/Ivory Coast/Ghana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Africa</td>
<td>Cameroon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabon/Cameroon/Republic of Congo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRC/CAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Africa</td>
<td>Zambia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mozambique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madagascar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mekong</td>
<td>Cambodia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myanmar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>Sumatra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borneo</td>
<td>Indonesia/Malaysia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Guinea</td>
<td>Indonesia/PNG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative influence
- Red: Primary cause of forest loss and/or severe degradation
- Orange: Important secondary cause of forest loss and/or severe degradation
- Yellow: Less important cause of forest loss and/or severe degradation

Trends
- Increase
- Decrease
- Stable
In Sumatra and Borneo in Southeast Asia, oil palm and pulpwod plantations have been the major drivers of deforestation. A portion of concession land granted to palm oil companies has not been developed and has become a stranded asset for those exposed to larger reputational and financial risks when converting forest to plantations. There is a gap between wood supply from pulpwod plantations and existing and planned pulp milling capacity, which may lead to continued pressures on natural forests. Over time, an increasing number of smallholders have become engaged in commercial crop production. Illegal oil palm plantations, often conducted by smallholders and absentee landholders, have become common in Sumatra and Borneo. Illegal logging in retired logging concessions or protected areas has decreased but still occurs, and localized illegal logging at smaller scales is difficult to stamp out. There are several large-scale mining operations, along with small-scale gold mining, but these operations tend to have a localized impact on forests although they may trigger some indirect pressure by attracting people to frontier areas. Finally, fires are often used in areas after the lands are deforested, but their effects tend to oscillate depending on climatic conditions; fire outbreaks are difficult to control in dry years such as in 2015 and 2019. Along with other policy actions, in the Malaysian part of Borneo, the state governments of Sabah and Sarawak have instituted land-use regulatory frameworks emphasizing the goals to maintain 50% and 57% respectively of total landmass under forest cover.

In Oceania there are contrasting trends between New Guinea and Australia. In both countries of New Guinea (Papua province in Indonesia, and Papua New Guinea), subsistence agriculture is still the single most important cause of deforestation, although larger-scale commercial agriculture is also expanding and some smallholders are switching to produce cash crops. Logging remains very important, particularly in Papua New Guinea which has become the world’s largest exporter of tropical timber and includes much illegal logging, although timber extraction is primarily a cause of forest degradation rather than complete loss. Pulpwod plantations play a significant role and growing road development often opens opportunities for further deforestation. In eastern Australia, by far the most significant driver is cattle ranching, with other forms of large-scale agriculture declining slightly. Fires are increasing and were particularly devastating in 2020 but are not generally associated with long-term conversion of forests to other uses and were not included within the timeline of our analysis. Logging remains significant in some places.

Figure 3.1. Main interactions among drivers of deforestation and forest fragmentation
3.3 INDIRECT DRIVERS PUTTING PRESSURE ON DEFORESTATION FRONTS

The factsheets for each deforestation front included in this report also capture the different underlying drivers, providing insights on their characteristics, intensity and influence across regions. With the risk of oversimplifying, since these pressures unfold differently across regions, below we synthesize the main indirect drivers influencing the dynamics of deforestation fronts since early 2000.

Population increases and growing domestic demand. Growing population in cities, which is faster in some contexts in Asia and Africa, leads to additional pressure on land for food, energy and materials\(^6\). Growing urbanization stimulates commercial agriculture for food supply, and timber extraction to supply a growing construction sector. Urban population growth also expands demand for energy, which in countries in Central Africa (e.g. Cameroon, DRC, CAR) and East Africa (e.g. Zambia and Mozambique) originates from traditional sources such as fuelwood and charcoal\(^5\). In addition, population increase in rural areas leads to further occupation of lands for agriculture\(^6\). This is likely one of the most important drivers of deforestation in some countries in Central Africa (e.g. DRC and CAR) and West Africa (e.g. Ghana), but it also places pressure on forestlands in some frontier contexts in the Amazon in Peru, Bolivia, Colombia and Brazil.

Increasing consumption levels and associated dietary shifts. Demand for food places continued pressure on land, particularly in the tropics and subtropics\(^6\). A heavy reliance of food systems on a narrow range of crops and livestock\(^6\) has led to a rapid increase in the demand of a few commodity crops for food and feed (e.g. wheat, rice, maize, soy, oil palm, meat)\(^6\), which tends to place pressure on expanding agricultural lands. The decline in cropland in temperate areas, which in part is associated with growing yields, has triggered a sharp increase in cropland area in tropical countries, including pasture, which has expanded mainly in Latin America\(^6\). Tropical croplands increased by more than 100 million ha during the 1980s and 1990s, including 47 million ha of pasture in Latin America\(^5\). About 55% of that expansion was at the expense of intact forests, and another 28% came from disturbed forests\(^5\). This effect was not only facilitated by the globalization of agricultural markets, but also the expansion of domestic demand in tropical countries, whose food systems also rely on oils, meats and refined carbohydrates\(^6\).

The role of meat and dairy products. Animal products have dominated agricultural land-use change over the last half-century\(^6\). Global per capita meat consumption has almost doubled since the 1960s and is for instance projected to increase by 4-6 times more in sub-Saharan Africa by 2050\(^6\). Meat production requires about five times more land to produce the nutritional value of its plant-based equivalents\(^6\). If livestock is kept indoors, relying on feed grown elsewhere, land requirements increase even more\(^6\). Currently, 36% of calories from the world’s crops are used for
animal feed, with only 12% of those feed calories contributing to the human diet[60]. Beef is by far the most inefficient form of livestock produce commonly available[60]. When land used for grazing and feed crops is combined, livestock production accounts for around 70% of agricultural land[39]. While aimed at supplying domestic markets, beef production in the Amazon continues to be the main driver of deforestation; which involving different types of farmers from large-scale cattle ranchers to diversified smallholders, it is often linked to low-production extensive systems[74].

Land contestation and encroachment of public and indigenous peoples and community lands. Weak land tenure rights result in land contestation that often works against indigenous peoples and local communities, in many cases with severe negative impacts on livelihoods and cultural losses, such as in cases in East Africa, Indonesia and the Mekong; land conflict has also been triggered by policies favouring land concessions to large-scale agriculture[23]. In contrast, there has been a widespread process of land rights recognition in the Amazon[23], where indigenous peoples have control of large portions of land[4] which has slowed but not stopped land grabbing of indigenous and traditional community lands. In addition, slow progress in the identification of public forests tends to be accompanied with active processes of encroachment of public forestlands, particularly in the tropics. In the Amazon, forestlands are still converted to pasture as the most effective and cheapest way to justify land ownership. In addition, forest clearing for pasture or grazing, or any other agricultural land use, leads to increased land market value, which tends to stimulate speculative processes of land acquisition, which are observed across deforestation fronts in the Amazon, Mexico and Guatemala, and Australia. There are cases in Indonesia, Mozambique and Cameroon where processes of land appropriation tend to involve local elites that make use of their political influence.

Persistence of informal, illegal economies in frontier areas. Informal economies are widespread in frontier areas, which in some cases are unregulated and operate outside of the law[33]. A portion are illegal activities that contravene formal regulations, often related to land use and timber management, in some cases due to local people’s inability to comply with regulatory frameworks[26], but in others due to the action of local mafias[27]. While illegal logging has shrunk in many contexts, as in the Amazon and Indonesia[34], it is still triggered when opportunities arise linked to oscillating international and regional demand as in Central Africa[35]. A few illicit economies have also expanded in frontier areas, notably in Colombia, Peru and Bolivia related to coca production[30]. In some cases, the establishment of processing facilities tends to stimulate illegal local supply such as palm oil in Indonesia that directly fuel expansion of oil palm plantations in public forests[36]. Illegal practices also comprise illegal land appropriation, illegal land conversion, illegal mining and money laundering used to expand agricultural activities.

Box 3.1 Land grabbing and land speculation in the Brazilian Amazon and Cerrado

Edegar de Oliveira Rosa, WWF-Brazil

Cattle production is the main activity that follows deforestation in the Amazon and cattle and soy play this role in the Cerrado. Yet underpinning deforestation and conversion of native vegetation in Brazil, and many other places in the tropics, is the financial outcome from the increasing value of the converted land through land speculation and land grabbing. The increment in the land value is associated with the production potential of the land, which increases with improved access to infrastructure and services. There is also a desire to hold land as a low-risk counter-cyclical asset (similar to gold). Therefore, the financial gains that can be obtained through the land markets, legal or illegal, constitute an important factor for converting forests and other ecosystems to other land uses. Curbing land grabbing and speculation requires not only effective land enforcement, but also other measures linked to the development of new infrastructure and logistics that support improved use of already cleared lands and the upgrade of low production farming systems.

There are 287 million ha of state-owned forest in the Amazon, mainly as protected areas, indigenous territories and concessions for forest management. About 70 million ha are still undesignated. Land grabbers target state-owned lands, which accounted for 27% of the deforestation in 2019[38].[45] affecting many indigenous people and traditional communities living in these areas and scaling up social conflict. Currently, there is a bill in the Brazilian Congress (MP 910/2019), proposed by the federal government, that if approved as it is would allow undesignated lands to be legally titled even if illegally deforested prior to 2018. Such changes in the legislation, proposed from time to time, heat up the illegal market of land grabbing in the Amazon. Similar situations affect protected areas, where land speculators convert natural vegetation expecting a change in the limits of the protected areas, or the degazettement of the entire unit.

The Cerrado has no significant area of state-owned undesignated land and land-use regulations permit more conversion of natural ecosystems to agriculture. The total area under protection is only 8% (compared to 50% in the Amazon). This context attracted investors looking for real estate assets, and the emergence of so called “land companies” specialized in brokering land transactions. This in turn has attracted international investors looking to profit from buying pristine Cerrado lands to produce soy and cattle, and benefit from a large increase in the land value. Due to unclear tenure documents and to the fact that many of these areas are occupied by traditional communities and indigenous people, land grabbing tends to happen based on fake titles, which also leads to conflict with these communities. Recent reports on the activities of these land companies are improving awareness of investors, some of whom are embracing non-conversion commitments and looking to run their activities in already cleared areas (based on a cut-off date).
Focus on commodity crops for rural development. Several fronts have faced an increase of large-scale crop plantations aimed at supplying agricultural commodities to international markets including soy in the Cerrado\cite{81}, and palm oil in Indonesia (Sumatra and Borneo)\cite{38, 82} and increasingly in New Guinea\cite{83} and Peru\cite{84}, among other countries\cite{85}. Some of these commodities involve significant smallholder participation, such as cocoa in Central and West Africa\cite{86}, and increasingly palm oil production in Indonesia and Malaysia\cite{82, 83}. Growing expansion of plantation agriculture is strongly linked to infrastructure development, including not only expansion of road infrastructure, but also processing capacities (e.g. soy crushing plants, palm oil mills), and marketing logistics and services\cite{86}. Agricultural policies, in a context of globalized markets, have often privileged the development of commercial agricultural targeting global markets, as a way to modernize the agricultural sector and sustain its contribution to economic growth.

Extractive industries as a way to increase fiscal earnings. Several countries have made use of “neo-extractivist” government policies to generate fiscal earnings in order to support social policies and infrastructure development, including in the Amazon, notably Bolivia and Peru\cite{88}, in Africa (DRC, Cameroon and Angola) and in Indonesia. These policies tend to favour allocation of mining, gas and oil concessions over other uses and tenure rights in frontier areas, including protected areas. In addition, these perspectives are permissive of informal gold mining, as in Peru, Colombia, Guyana and Indonesia. In sub-Saharan Africa, expansion of mining has been triggered by Chinese investments and demand, which have stimulated large-scale operations (such as in Congo Basin), but also informal mining\cite{89}. A different type of extractivism entails large-scale logging operations or small-scale chainsaw milling when undertaken unsustainably, often in public forests or lands under contested tenure rights.

Expansion of investments in infrastructure. Large-scale investments in infrastructure (roads and hydroelectric dams) accompanied by urbanization are common in Latin America, Mekong and Indonesia, and are increasing in Africa. The latter are associated with the wider Belt and Road Initiative aimed at stimulating production and trade and is linked to the development of extractive activities\cite{90}; the initiative is expected to pose significant risk to biodiversity\cite{91}. Road expansion in forestlands is facilitated by large-scale public investments, often financed by regional development banks, which are accompanied by private investments in processing and storage facilities (e.g. slaughterhouses, soy crushing plants, palm oil and pulp and paper mills). Roads are expanding at an unprecedented rate, both in total length and spatial extent\cite{92, 93}. In addition, local roads are expanding into the fringes of forestlands and in some cases penetrating into protected areas, stimulating the expansion of human settlements\cite{94}. This is the case in the Amazon\cite{95}, Central Africa, Mekong and Indonesia\cite{96}.

Rural poverty and reliance on forests as social safety nets. Access to forest goods often fulfils basic needs and provides social safety nets for poor local populations and smallholders\cite{97}. Yet growing social needs lead to increased pressure on forests for fuelwood and for land for shifting agriculture, particularly when smallholders and local villagers are in need of cash income to deal with external shocks in the absence of off-farm labour opportunities. This tends to be the case in Central Africa (e.g. CAR, DRC, Cameroon) and East Africa (e.g. Zambia, Madagascar). Smallholders engage in high-value tree crop production (e.g. cacao in West Africa, oil palm in Indonesia) but while this may alleviate rural poverty, it can result in adverse environmental effects. Growing reliance on cash economies due to a lack of local public social services or social cash-transfer programs may erode existing family and community safety nets for the rural poor and increase dependence on cash income, thus increasing the vulnerability of local populations to external market shocks.

Lack of policy alignment, weak governance, and corruption. Significant efforts have been spent in improving the regulatory frameworks for land and forest management, monitoring and environmental control. The main issue is still the lack of alignment between the legal frameworks that support long-term environmental sustainability, and the financial and economic incentive systems aimed at achieving short-term economic growth\cite{98}. This is notably the case in the Brazilian Amazon, Indonesia and DRC. In addition, environmental control is not supported by the necessary public budgets, and corruption prevails as evidenced in several cases across the Amazon, Central Africa, the lower Mekong and Indonesia. The emergence of private governance has complemented public policy enforcement, and upward convergence of state regulatory frameworks and voluntary standard systems\cite{92, 99, 100}. Nonetheless, these attempts are often accompanied by a lack of accountability and transparency, and in some cases have contributed to an effect of shifting the blame between state and corporate actors, and between the latter and local stakeholders\cite{101}.

Indirect drivers by their nature are larger and more diffuse, have greater momentum and are more difficult to tackle than many of the direct drivers of forest degradation and loss. Those trying to achieve sustainable development – be they local communities, indigenous peoples, conservation or human rights NGOs, responsible companies or even national and local governments – often feel powerless to do much to address these underlying issues. The focus of practical action is therefore usually on trying to control the direct drivers. However, the extent to which many of the direct drivers can be addressed at the scale needed is severely hampered unless the indirect drivers are also tackled at the same time. This paradox lies at the heart of much conservation work. Population increase and booming levels of consumption – particularly of meat products – together help drive land conversion for agriculture, huge illegal economies undermine efforts to achieve sustainability through improvements to the legal trade, and so on. Conservation organizations are often forced into short-term responses to address particular emergencies. While this is inevitable, and often necessary, it is important to keep a longer term perspective in mind. In the next section, the focus shifts from drivers to responses, and we examine some of the responses put in place across deforestation fronts to halt and reverse deforestation.
4. RESPONSES TO DEFORESTATION

KEY MESSAGES

Responses to deforestation have evolved from a narrow focus on national laws and policies to a wide range of statutory and voluntary actions involving many different stakeholders.

Six single-target oriented approaches and two integrated approaches, which are not exclusive, have been implemented. These approaches have focused on 13 responses, both area-based and commodity or sector specific.

Area-based responses have contributed to halting deforestation in localized places under threat but have not avoided leakage. Commodity or sector-specific responses still struggle to reach impacts at scale mainly due to limited uptake by upstream players.

None of these responses perfectly addresses deforestation and progress has been most successful when two or more are used in combination. Combinations of responses within deforestation fronts and across scales have potential to achieve positive results.

Main challenges arise from the need to tailor responses to the context and to avoid leakage and unintended results. A balance needs to be found between stringency and inclusivity. Illegal and shadow economies persist in undermining sustainability.
4.1 FRAMING THE ANALYSIS: MULTIPLE RESPONSES

Multiple responses have emerged to tackle deforestation and forest degradation, which have evolved over time in their aims, theories of change and operational frameworks. These responses consist of a large number of policies, institutional and social actions and initiatives embraced by state and non-state actors including private sector, civil society organizations, social organizations, and multistakeholder processes. In the past, these responses were primarily linked to state-driven efforts to change regulatory frameworks and enforcement systems. Since then, there has been a proliferation of approaches and initiatives relying on market-based mechanisms and supply-chain interventions, as well as involving multi-stakeholder processes at several different scales. Another approach has emphasized right-based approaches with a focus on recognizing the rights of IPLCs to their ancestral lands and territories, their governance systems, and sustainable economies within them.

Beyond enhancing legality and law enforcement, there has been a proliferation of market-based initiatives, such as payments for environmental/ecosystem services (PES) to ensure the delivery of environmental outcomes, and certification to advance sustainable land and forest management. These are seen as mechanisms with potential to contain deforestation expansion as well\[100, 103\]. The business sector, chiefly downstream consumer goods companies\[104\], has increasingly embraced supply chain-based initiatives translated into zero deforestation commitments, supported by consensus-based guidance on commitments setting and implementation (e.g. the Accountability Framework initiative). These commitments have been accompanied by approaches to support sustainable supply at the jurisdictional level, to stimulate public and private partnerships while increasingly relying on responsible investment and sustainable development initiatives\[105\].

The most ambitious global experiment to tackle deforestation has been REDD+, the mechanism to reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks in the context of intergovernmental climate negotiations. Key developments include the UNFCCC Warsaw Framework for REDD+ (2013), various options for financing through results-based payments and results-based finance, and emission reductions credits through the mechanism established by article 6 of the Paris Agreement (2015). The complex process of negotiation and divergent visions about how to mobilize finance for REDD+ have so far undermined hopes that it would evolve into an effective instrument to reduce forest-related carbon emissions as originally expected\[106\]. However, many countries have included forest-related actions under their nationally determined contributions (NDCs)\[107\], and are in the process to increase their level of ambition. In addition, several private efforts are aligning with NDCs to achieve their carbon emission targets\[108\], and there are hopes that meaningful partnerships will evolve at the sub-national level through jurisdictional approaches involving all relevant local actors, including smallholders and IPLCs\[109\].

By following the framework provided in our introduction, linking deforestation drivers and responses, Table 4.1 offers a description of eight approaches (six single-target oriented and two integrated approaches) embraced in one way or another by state and non-state actors across the 24 deforestation fronts aimed at supporting forest conservation, and avoiding deforestation and forest degradation.

The six single-target oriented approaches focusing on:
1. Securing the rights of indigenous peoples and local communities (IPLC)
2. Securing conservation of biodiversity-rich areas
3. Ensuring legality of production and trade
4. Enhancing sustainability of supply chains
5. Ensuring maintenance of environmental service
Building on these single-target oriented approaches, two integrated approaches have evolved:

1. Results-based payments under integrated REDD+ policy frameworks
2. Jurisdictional and landscape approaches

These approaches embrace 13 different responses grouped as area-based and sector/commodity specific (Figure 4.1). These responses combine carrots (rewards) and sticks (sanctions) in different ways under initiatives driven by governments, corporate actors and/or civil society organizations.

Figure 4.1 Approaches and responses to address deforestation and forest degradation
Table 4.1 Main approaches to support conservation and reduce deforestation

<table>
<thead>
<tr>
<th>Operational scope</th>
<th>Securing the rights of indigenous peoples and local communities</th>
<th>Securing conservation of biodiversity-rich forest areas</th>
<th>Ensuring legality of production and trade</th>
<th>Enhancing sustainability of supply chains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-cutting response linked to ensuring legal compliance, sustainable supply of forest-risk commodities (e.g. soy, palm oil, beef, cocoa)</td>
<td>Area-based (indigenous peoples and local community lands and territories)</td>
<td>Area-based (high value biodiversity and conservation areas)</td>
<td>Comprising mainly land use, production and trade of agricultural and forestry products</td>
<td>Commodity specific (e.g. palm oil, cocoa, beef, timber)</td>
</tr>
<tr>
<td>Impact pathway</td>
<td>Ensuring indigenous peoples and local communities' social and economic rights</td>
<td>Avoiding encroachment and conversion of forestlands</td>
<td>Enforcing compliance with regulatory frameworks</td>
<td>Uptake of sustainability practices, and segregation of supply sources</td>
</tr>
<tr>
<td>Main goal</td>
<td>Recognize the rights of indigenous peoples and local communities, and their customary systems of authority and forms of government and natural resources management, and provide the means including secure tenure and participation in decision-making for the realization of their human rights</td>
<td>Reduce the expansion of non-forest land uses over forestlands, and maintaining other ecosystem services</td>
<td>Ensure compliance with legal and regulatory frameworks to advance sustainable development goals</td>
<td>Segregate the supply complying with sustainability standards, and exclude non-performing suppliers</td>
</tr>
<tr>
<td>Levers of change</td>
<td>• Demarcated forests • Clarified tenure rights</td>
<td>• Demarcated protected areas and OECMs • Closed agricultural frontiers • Rewards for provision of environmental services</td>
<td>• Improved productivity • Agricultural intensification • Corruption and illegality • Transparency</td>
<td>• Segregation of suppliers • Transparency of sourcing • Rewarding good performers • Preferential markets</td>
</tr>
<tr>
<td>Type of responses</td>
<td>• Recognition of indigenous peoples and local communities’ tenure rights</td>
<td>• Protected and conserved areas (includes OECMs and ICCAs)</td>
<td>• Moratoria on clearing forests • Fire management • Land-use and forest regulations including zoning and logging and export bans • Timber legality and assurance systems</td>
<td>• Sustainability standards and certification • Zero deforestation / traceability of supply sourcing</td>
</tr>
<tr>
<td>Originator</td>
<td>Social movements, indigenous peoples’ social organizations</td>
<td>State, environmental NGOs, governments, industry</td>
<td>Governments at the national or sub-national level</td>
<td>End-buyers, consumer goods companies, environmental NGOs, multi-stakeholder processes</td>
</tr>
<tr>
<td>Primary target</td>
<td>Indigenous territories and community lands</td>
<td>Public lands with high biodiversity value, indigenous territories, some private lands</td>
<td>All producers, although small-scale farmers may be exempted in some cases</td>
<td>Consumer goods companies, large-scale corporations, traders</td>
</tr>
<tr>
<td>Secondary target</td>
<td>Other community lands</td>
<td>Plantations and private lands</td>
<td>Intermediaries, traders and financial institutions</td>
<td>Upstream suppliers</td>
</tr>
</tbody>
</table>

Acronyms:
- **ES** Environmental services.
- **ICCA** Indigenous and community conserved areas.
- **NGO** Non-governmental organization.
- **OECM** Other effective area-based conservation measures.
- **PES** Payment for environmental/ecosystem services.
- **REDD** Reducing emissions from deforestation and forest degradation.

The six single-target approaches are not exclusive, and their response options often interact. In particular, protected areas and indigenous peoples and local communities’ lands and territories may overlap, and there are many efforts to support conservation within IPLC lands. In addition, synergies occur between conservation and sustainable supply chain responses through engaging the private sector to advance deforestation-free supply chains. Furthermore, approaches to advance sustainable finance interact with options to advance sustainable supply of forest-risk commodities (e.g. soy, palm oil, beef, cocoa) in the context of jurisdictional and/or landscape approaches. Monitoring of deforestation is a cross-cutting response linked to ensuring legal compliance, achieving deforestation-free targets and compliance with PES contracts. Finally, under the integrated approaches, delivery of results-based payments for REDD+ depends on a combination of response options by state and non-state actors, particularly at the national level. Jurisdictional partnerships may implement diverse response options to advance low-carbon development strategies while enhancing jurisdictional sustainability, often at the sub-national level.

Given their different scope, and conditions associated with their uptake and scaling up, the potential of the different responses to address the drivers of deforestation and forest degradation and ameliorate their negative social and economic effects.
<table>
<thead>
<tr>
<th>Environmental services (ES)</th>
<th>Achieving results-based payments under REDD+</th>
<th>Stimulating transitions to more sustainable jurisdictions/landscapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision of ES (e.g. carbon sequestration and storage, watershed and biodiversity protection)</td>
<td>Payments in exchange for reduction of carbon emissions and enhancement of carbon stocks</td>
<td>Stimulating public and private partnerships towards adoption of low-carbon development options in jurisdictions or landscapes</td>
</tr>
<tr>
<td>Development of market transactions to pay for the delivery of ES</td>
<td>Governments at the national and/or sub-national level adopt effective measures to achieve REDD+ agreed targets</td>
<td>Partnerships that combine public and private efforts to advance uptake and scaling up of sustainability practices and response options</td>
</tr>
<tr>
<td>Compensate those who enhance carbon sequestration and storage, and protect watersheds and biodiversity</td>
<td>Reduce forest emissions and enhance carbon stocks in forests while contributing to national sustainable development</td>
<td>Align interests and coordinate actions among stakeholders towards shared conservation, supply chain sustainability and inclusive development goals</td>
</tr>
</tbody>
</table>

Integrated approaches

<table>
<thead>
<tr>
<th>Mainstreaming responsible finance</th>
<th>Deforestation monitoring at the national and/or subnational level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision of ES (e.g. carbon sequestration and storage, watershed and biodiversity protection)</td>
<td>Environmental NGOs, local and national governments, some companies</td>
</tr>
<tr>
<td>Development of market transactions to pay for the delivery of ES</td>
<td>Environmental NGOs, multilateral banks</td>
</tr>
<tr>
<td>Compensate those who enhance carbon sequestration and storage, and protect watersheds and biodiversity</td>
<td>Intergovernmental negotiation under the UNFCCC</td>
</tr>
<tr>
<td>• Monetization of carbon</td>
<td>Environmental NGOs, coalitions of sub-national governments, business partnerships</td>
</tr>
<tr>
<td>• Carbon markets</td>
<td>Governments, private sector, farmers, indigenous communities</td>
</tr>
<tr>
<td>• Additional cash income for farmers</td>
<td>Traders, banks, investors</td>
</tr>
</tbody>
</table>

Environmental effects tends to differ. We build here on the emerging scholarly work for assessing the effectiveness of the different response options implemented to halt deforestation[110]. We look separately at the responses as they have been implemented in the deforestation fronts, and review the emerging scholarly work assessing their effectiveness. State-driven responses, notably protected areas and recognition of customary tenure rights and community-based management, have received greater attention[111, 112] along with moratoria on forest clearing as part of renewed state attempts to tackle deforestation[113–115]. Market-based measures, notably PES[108] and forest certification[107], have also received attention, as well as zero-deforestation/ conversion commitments[116–120]. The analysis of REDD+ has mainly focused on policy processes shaping design[121] and results from pilot projects[122]. Jurisdictional initiatives are receiving growing attention, yet still with more emphasis on conditions explaining progress[123]. Systems change responses are gaining attention for their potential to effect transformative change — including shifts in diets and consumption patterns, and development paradigms that more explicitly acknowledge nature’s contributions to people[124]. Systems change responses may be more impactful, but their effects across deforestation fronts will likely differ.
4.2 DEVELOPMENTS IN RESPONSES ACROSS FRONTS

Different responses have been adopted across the deforestation fronts, as described in the factsheets for each front. Table 4.2 summarizes these responses and classifies them into two major groups – area-based responses and commodity or sector-specific responses, as described in Section 1. A more detailed explanation of some selected responses is provided in the factsheets for each deforestation front at the end of this document. In addition, those factsheets include responses that are specific to each deforestation front, and thus are not captured in Table 4.2.

Protected areas remain the most widely applied response to deforestation given their effect on halting external human interventions and avoiding conversion\[111\]. There is still much room for improvement in spatial distribution and management of protected areas. The area covered by terrestrial protected areas globally has started to plateau, at 15% of land area, or 20% of forest area\[123\], with substantial regional variations across deforestation fronts, ranging from less than 5% (New Guinea, Liberia) to over 50% (Venezuela). Qualitatively, protected areas have seen improvements in terms of increased connectivity and attention to management effectiveness. The percentage of protected connected land has increased globally from 6.5% in 2010 to 7.7% in 2018\[126\], while the number of protected areas undergoing management effectiveness assessments nearly doubled\[127\]. Asia is the only exception to this global trend, where protected area connectivity has decreased.

Recognition of IPLC tenure rights, linked to community-based forest management, is receiving greater attention as a promising conservation strategy\[132\]. Approximately one-quarter of global forests, or 1 billion hectares, are estimated to be managed by indigenous peoples and local communities\[74\]. Since the 2000s, countries have increasingly recognized and formalized IPLC tenure rights to forestland and/or forest resources, with 15% of forest area now legally owned, managed or used by IPLCs, an increase of nearly 40% from 2002 to 2017\[108\]. In recent years, there has been renewed interest in securing IPLC rights to land, forest resources and promoting actions to more equitable benefit sharing as a strategy to slow down forest loss and climate change, while delivering greater socioeconomic benefits locally\[126, 136\]. Across deforestation fronts, IPLC tenure rights have already been widely recognized in the Amazon, and the trend is increasing in Southeast Asia, Australia and West Africa, but more is needed for governments to acknowledge existing IPLC tenure claims. In addition, in some contexts, there is a lack of institutional mechanisms to avoid encroachment of recognized IPLC lands and territories. But tenure rights alone are not necessarily enough to ensure sustainable use; several other conditions also have to be in place such as effective local enforcement and monitoring, and collective action to pursue land management and share benefits\[136\]. In the tropics, mainly in Latin America and Asia, the recognition of IPLC rights has been accompanied by the development of community and social forestry, also as a way to protect their lands and territories\[136\].

Actions for fire management and prevention have been unevenly applied across countries and have been more about fire control than wildfire prevention. Some longstanding fire management efforts have been developed in Australia, since the tropical savannahs of northern Australia are among the most fire-prone regions in the world. But despite these efforts, fires have expanded, particularly into intact and non-fire-adapted rainforests\[132\]. Fires have been traditionally used in the Amazon and Indonesia as part of traditional shifting cultivation practices, but today are also increasingly used as a cheap way to convert lands either for cattle ranching in the Brazilian Amazon\[134\], or industrial plantations in Indonesia\[135\]. Additionally, a portion of the observed fires are also uncontrolled fires. In the tropics, extreme El Niño Southern Oscillation (ENSO) events have driven increase in fires\[136\], testing the capacity of governments, civil society and producers to prevent, control and eradicate them. Forest fires are likely to increase due to longer and more extreme dry seasons as a result of climate change\[137\]. The recurrence of fires in 2019 has significantly affected large areas in the Brazilian Amazon, Bolivian lowlands, Indonesia, Chaco and Australia, leading to growing efforts and increasing budget pressures for firefighting.

Land-use and spatial zoning was widely adopted by some countries for conservation and development planning at different levels, but has received less attention over time. Land-use zoning was mainly adopted in the Amazon (e.g. Bolivia, Brazil, Peru) and Southeast Asia (e.g. Indonesia) under different labels. For example, extensive efforts were undertaken in Bolivia to embrace land-use plans at the sub-national level as part of the formal planning process, yet these were abandoned during the last government administration\[139\]. Economic and territorial zoning was also undertaken at the state level in Brazil\[139\]. These efforts, however, while involving long-term stakeholder negotiations, were often not accompanied by incentive mechanisms or proper enforcement. Further debates on transitions to low-carbon development, particularly in the context of juridictional approaches to REDD+, have tried to revitalize this type of conservation planning\[140\]. There are still only a few of these attempts that have effectively linked territorial planning to reward incentive systems, yet doing so constitutes a key ingredient of sustainable landscape approaches, which are also gaining increasing traction. There are dangers that spatial land-use planning often relies primarily on external expert opinions to optimize solutions at a landscape level, yet in practice these have to be negotiated by local stakeholders\[140\].
<table>
<thead>
<tr>
<th>Deforestation front</th>
<th>Area-based</th>
<th>Commodity or sector specific</th>
<th>Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela/Guyana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gran Chaco</td>
<td>Paraguay/Argentina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chocó-Darién</td>
<td>Colombia/Ecuador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maya Forests</td>
<td>Mexico/Guatemala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Africa</td>
<td>Liberia/Ivory Coast/Ghana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Africa</td>
<td>Cameroon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabon/Cameroon/Republic of Congo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRC/CAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Africa</td>
<td>Zambia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mozambique</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mekong</td>
<td>Cambodia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myanmar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>Sumatra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borneo</td>
<td>Indonesia/Malaysia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Guinea</td>
<td>Indonesia/PNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 Analysis of responses for 24 deforestation fronts

Scale of response

- Significant deployment at wider scale
- Actively used and expanding
- Project-specific, small-scale and experimental
Timber legality and assurance systems, driven by importing markets, have begun to tackle illegal logging and improve the transparency of timber supply chains at national scale. One example is the European Union Forest Law Enforcement, Governance and Trade (EU FLEGT) Action Plan, issued to implement the EU Timber Regulation (EUTR). This has brought substantial and much-needed resources and political attention to improving forest governance through efforts to define and monitor legal timber extraction and trade formulated in voluntary partnership agreements (VPAs) with forest countries. The EU’s efforts in negotiating VPAs focused mainly on Central Africa (5), West Africa (2) and Southeast Asia (6), and Honduras and Guyana in Latin America. An evaluation of EU FLEGT conducted in 2016 suggested that additional efforts were needed to ensure its effective and efficient application, and that the programme needed to address new challenges regarding deforestation and forest conversion.

Indonesia in 2016 was the first country to sign a VPA based on its own timber legality assurance system, known as SVLK. Other major timber importing countries have enacted similar legislation prohibiting the import of illegal timber, including the US 2008 amendment of the Lacey Act and Australia’s Illegal Logging Prohibition Act. In the Amazon, countries including Brazil, Bolivia and Peru have developed national timber legality assurance systems outside of FLEGT. Governments and companies are also using wood identification technologies such as wood anatomy, DNA and stable isotope testing and DART mass spectrometry to verify wood species and provenance. These technologies can help to pinpoint potentially illegal wood products at timber checkpoints, in ports and in company supply chains.

The adoption of voluntary sustainability standards and certification schemes is growing but scale remains limited. Voluntary certification has been used as a conservation strategy for decades, starting with the one of the oldest commodity certification schemes, but the expansion of forest certification has plateaued in recent years and uptake has been limited across deforestation fronts due to, among other factors, lack of market demand, premium price points and high cost of conformance. At the same time, the voluntary market-based approach has expanded to other agricultural commodity sectors with high deforestation footprints in the tropics, such as beef, soy, palm oil, coffee and cacao. There has been steady growth in certified area and volume for soybean, oil palm, coffee and cacao in countries experiencing high deforestation.

The percentage of protected forest area globally has increased nearly doubled from 6.5% in 2010 to 7.7% in 2018, while the number of protected areas undergoing management effectiveness assessments has emerged to move towards zero deforestation.

A diverse set of supply chain-based initiatives has been used to mitigate climate change and biodiversity loss has prompted a groundswell of business initiatives in the form of codes of conduct and public pledges to zero deforestation in supply chains. These supply chain-based initiatives tend to be viewed as ‘stepping stones’ toward full conformance with sustainability standards: targets tend to be issue-specific and auditing requirements less stringent. More than 480 companies have made 850 commitments as of 2019, with beef, soy, palm oil, pulp and paper, and natural rubber sectors being the main focus, underscoring the popularity of the approach. However, effective implementation is lagging, in part due to lack of clarity about how such commitments can be achieved in an inclusive, equitable and credible manner, something that the Accountability Framework Initiative (AFI) is aimed to contribute to. More importantly, companies embracing commitments tend to be those closer to consumer pressure and that face higher reputational and financial risks. Conversely, companies higher up the value chains have generally not endorsed deforestation-free commitments, since these upstream producers (companies or smallholder farmers) may face higher production costs without necessarily receiving direct market benefits.

The recognition that a handful of agricultural commodities have a disproportionate impact on tropical deforestation has led to sector-wide efforts to halt commodity-driven deforestation. Banning purchases linked to particular sourcing areas became a popular strategy. Brazil’s Soy Moratorium was the first voluntary industry-wide agreement, where major

15% of forest area globally is now legally owned, managed or used by IPLCs, an increase of nearly 40% from 2002 to 2017. However, many of the initiatives are relatively new and consequently the scale of their contributions, as well as the uptake by small-scale producers, remains relatively small in comparison with commodity volumes traded in the markets.
soy traders agreed not to purchase soy grown on lands deforested after July 2006 in the Brazilian Amazon\[153\]. Similar approaches were adopted by the cattle sector in 2009 but under a much more fragmented supply chain\[156\]. State-mandated moratoria have been implemented in Indonesia and Cambodia. The government of Indonesia issued a moratorium on new conversion permits in primary forests and peatlands in 2011 and subsequently made the ban permanent\[157\], as well as issuing a palm oil moratorium suspending new oil palm concession licences for three years in 2018\[158\]. In Cambodia, timber concessions for selective logging were suspended\[159\] and a moratorium on new economic land concessions for commercial agricultural expansion was enacted in 2012\[160\].

PES has been adopted as a market-based mechanism to reduce deforestation by rewarding the provision of forest-related environmental services. Several projects have been set up in the Amazon (Brazil, Bolivia, Colombia, Peru), in Argentina in the Chaco region, and in some countries in Southeast Asia, notably Viet Nam and Indonesia. In Brazil, there have been multiple PES projects, several in the Amazon\[161\]. In Colombia, incentives were introduced to support the improvement of extensive cattle ranching systems through uptake of agrosilvicultural practices\[162\]; these were associated with enhanced watershed management in Bolivia\[163\]. Several PES experiments were conducted in Indonesia, with a focus on water and carbon\[164\]. In a few cases, PES has been adopted at wider scales with government involvement. For example, in Argentina, a programme was devised at the subnational level to support sustainable forest management, and to pursue activities such as tourism and agroforestry\[165\]. In Brazil, programmes have been introduced at state level in Amazonas and Acre, along with a national programme, Bolsa Verde\[166\]. Peru has implemented a National Forest Conservation Programme with a PES approach\[167\], and a PES law was recently issued in the context of the Peace Agreements in Colombia\[168\]. In Mexico in 2003, the National Forestry Commission (CONAFOR) introduced a large-scale programme encouraging forest conservation by making payments to owners of ecologically valuable land\[169\].

There has been a proliferation of REDD+ pilot projects and national frameworks have been developed and implemented, but momentum has slowed due to a lack of results-based payments. Initiatives fostering REDD+ include the Forest Carbon Partnership Facility, the UN-REDD+ Programme, the pilot REDD+ results-based payment of the Green Climate Fund, and bilateral programmes of Norway and Germany. The Paris Agreement (Article 6.2) opened new ways for mobilizing public, private, bilateral and multilateral finance through a transfer-based finance approach. Projects have been implemented across forest-rich countries in the Amazon (e.g. Brazil, Colombia, Peru), Central Africa (e.g. Cameroon, DRC, Gabon), West Africa (e.g. Liberia, Ghana), Mekong (e.g. Cambodia, Myanmar) and Indonesia. Many of these projects involved readiness activities such as adopting monitoring, reporting and verification (MRV) systems and enhancing deforestation monitoring systems (e.g. Colombia) or improving existing ones (e.g. Brazil to include the Cerrado region). Momentum was lost due to the lack of cash flows to forest-rich countries for reducing carbon emissions, but some have been sustained by conditional payments under bilateral agreements, including between Norway and Brazil (US$1 billion, 2007)\[170\], Indonesia (US$1 billion, 2010)\[171\], Gabon (US$150 million, 2019)\[172\] and Guyana (US$250 million, 2010)\[173\]. Many other countries across the tropics and subtropics have signed an Emission Reductions Payment Agreement (ERPA) with the Forest Carbon Partnership Facility Carbon Fund\[174\]. In addition, many countries have integrated their REDD+ strategies in their NDCs under the Paris Agreement\[175\].

A growing interest in upscaling solutions has triggered landscape projects embracing one or several dimensions of sustainability. Landscape projects are diverse. Some offer assistance to support wider uptake of sustainability practices, such as those implemented in Ghana on sustainable cocoa production as part of wider partnerships between traders, producer organizations and state agencies\[176\]. This is also the case in some green development projects implemented at the provincial level in Indonesia, particularly around sustainable palm oil production\[177\]. Other projects are mobilizing finance, often blended finance through targeted financial schemes, to support the transition to more sustainable commodity supply, while de-risking investments for private funds\[178\]. Through sustainable jurisdictional approaches, some environmental NGOs are supporting long-term partnerships between the corporate sector and state agencies to put in place sustainability roadmaps for specific jurisdictions\[179\]. Increasingly, initiatives at the jurisdictional level to halt deforestation are also including efforts to support forest landscape restoration.
Our knowledge on the effectiveness of responses is still limited and often refers only to some of the more widely adopted strategies, such as protected areas, indigenous peoples and community forest management, certification and PES. Main shortcomings identified in the current analysis are linked to the poor design of assessments, the difficulty to simultaneously capture their conservation and economic outcomes, as well as changes of outcomes over time, since they are not static\[^{179}\]. Recent interventions have received less scrutiny, particularly those that deal with more complex value chain and territorial arrangements and policy mixes\[^{180}\]. Below we summarize some of the main findings in the literature regarding both area-based and sector/commodity-specific responses, complemented with an expert assessment conducted in each of the 24 deforestation fronts.

Protected areas can be an effective measure for conservation\[^{181}\] with on average positive impacts on local people’s wellbeing\[^{182}\], yet their coverage is limited\[^{183}\] and subject to changing government policies and protected area downgrading, down-sizing and degazettement (PADDD). The effectiveness of protected areas in reducing forest loss varies across regions, with Southeast Asia experiencing the highest losses\[^{184}\]. Some of the differences in deforestation outcomes can be explained by the locations and types of protected areas\[^{185}\]. Large and relatively remote protected areas in the Congo and Amazon basins have low deforestation rates, while in Southeast Asia, Central America and West Africa, many protected areas confer little or no protection from human activities that lead to forest loss\[^{186}\]. Lack of resources and management capacity to enforce protected areas\[^{187}\] and limited alternative economic strategies that could discourage encroachment, hunting or timber extraction\[^{188}\] are among the main underlying reasons why some perform poorly. Furthermore, protected areas’ performance is also precarious because they are constantly under pressure from competing interests to develop or exploit natural landscapes\[^{189}\], as demonstrated by the change in Brazilian government’s views in favour of supporting agribusiness and extractive industries in the Amazon\[^{190}\].

Box 4.1 A case exploring the determinants of protected area effectiveness

Protected areas scored consistently high in our analysis of responses and have been effective in parts of Africa in maintaining forest cover. In some countries they are now virtually the only places where native forests remain, for example in Rwanda\[^{191}\] and Ghana\[^{192}\]. Protected areas are not perfect conservation tools. Forest loss and degradation still occur in many and some apparently successful protected areas are probably maintained for now more by their remoteness from development than by effective management. Forest protected areas in West Africa have been identified as under particular pressure\[^{193}\]. Other protected areas, while maintaining vegetation cover, have lost many of their constituent species to bushmeat hunting and the wildlife trade\[^{194}\], leading to the “empty forests” phenomenon\[^{195}\].

These problems should, however, not be overstated: many African protected areas continue to maintain both forests and species\[^{196}\], in spite of heavy pressures. A regional review found that only 6.8% of East African protected areas had been converted to farmland since gazettement\[^{197}\]. A major review of the effectiveness of African protected areas in retaining forest found that parks generally had less forest loss within their boundaries than outside, sometimes dramatically so, with success closely linked to management effectiveness. Smaller protected areas and, counterintuitively more inaccessible protected areas were more likely to suffer losses\[^{198}\]. A meta-study in Africa’s national parks found that socio-cultural issues were the prime factor in determining success and failure, particularly related to the establishment of the protected area and the participation and attitudes of local communities\[^{199}\]. Security of land tenure is an important factor in securing forests\[^{200}\], although there is also evidence of disproportionate loss of forests in community-managed lands in Tanzania\[^{201}\] and continuing decline of biodiversity in locally managed forests\[^{202}\]. There are thus no magical solutions here but a mixture of effective management and good community relations seem to be critical factors in protected area success.
There is growing evidence that supporting forest management by IPLCs may contribute to containing deforestation while supporting local livelihoods. While protected areas are generally effective, pan-tropical analysis indicates that strict protection may not indeed be the best conservation measure everywhere (for reasons mentioned above). Indigenous peoples and local communities can be especially effective as forest stewards in places where weak forest governance and law enforcement capacity cripple the government’s ability to safeguard public lands, yet in many cases indigenous peoples and local communities tend to face with greater pressures from other actors interested in getting access to extract the natural resources of their lands and territories. The studies on the effectiveness of indigenous and community conserved areas tend to agree on their positive contributions. One pan-tropical study research finds multi-use protected areas where indigenous peoples local communities have access to forest resources may be even more effective than strictly protected areas in suppressing fire across Latin America and Asia, with indigenous lands reducing deforestation pressure even further. Another review found that community conserved areas fell short of the effectiveness of protected areas, but showed a marked improvement over open-access areas. An in-depth study of six community forestry initiatives in Indonesia found marked differences in the sustainability of management in different areas. It is important to ensure that the enabling conditions are in place for communities to effectively manage lands, including protection of tenure rights and capacity of community members to manage production forestry as well as financial feasibility of local initiatives, particularly the ones related to timber extraction. In this line, initial support from governments and other partners for start-up capital, subsidized access to training and technical assistance, and navigating complex bureaucratic systems are key elements to improve commercial forest management.

Box 4.2 Smallholders in the global commodity marketplace – exploring sustainable community-based natural resource management in the Mekong

The growing global appetite for agricultural and forest commodities is changing the livelihood choices faced by millions of smallholders around the tropics. Nowhere is this change more visible than in the lower Mekong, owing to its high rural population density and proximity to large consumer markets and processing hubs. Marked-oriented commodity production – such as rubber, oil palm, coffee, sugarcane, biofuel feedstock and fast-growing tree species – is steadily replacing subsistence agriculture as the dominant economic activity for farmers and communities across rural landscapes. There is no readymade solution to effectively address the deforestation pressure coming from small-scale commodity production. Secure land tenure is found to be effective as a forest protection measure on average, but insufficient on its own to prevent conversion due to land speculation and high pressure from competing land uses. The lower Mekong countries, governments have implemented policies to allocate land to poor households and instituted legal frameworks for community-based forest management. While these policies are well intended, they can also create barriers for communities and smallholders to gain material benefits from managing their land and resources sustainably, for example, by making it prohibitively expensive for small-scale tree growers to sell their wood legally.

The day-to-day challenges that many of the small-scale producers face – from legal compliance to finance and market access – also limit their engagement with voluntary standards and certification systems, as the costs of conformance are often perceived to be higher than the benefits. The growing role of communities and smallholders in global commodity value chains presents a new threat, as well as an opportunity, in tackling deforestation. In the lower Mekong, the integration of macro and micro-level interventions to align policy and market incentives has shown potential to reduce forest loss from community-managed production forests.

For over a decade, WWF has been working in Bolikhambai province in central Laos to support a nature-based development model in line with communities’ traditional ways of living. The project has sought to align government land-use planning policy with bottom-up village forest management, while incorporating certification to ensure the quality of forest management and community governance and building a non-timber forest product (rattan) value chain. This helped reduce forest loss in four participating villages by 13% between 2010 and 2018. Smallholders and communities – like all economic agents – face trade-offs and respond to incentives. Spatial planning for land use at landscape level could help better allocate land for economic development and for conservation. Market and policy measures at local, national and global levels need to work together to ensure that they are conduits to sustainable community production.
Market-based initiatives, notably certification, have been widely scrutinized and the results show ambiguous outcomes in reducing forest cover loss— in some cases, certification resulted in lower forest cover loss, but in others it had no measurable impact. Overall, certification in coffee and palm oil may have reduced rates of tree-cover loss in certified farms in some specific settings, yet there is no evidence on whether voluntary standards have wider effects on deforestation outside the boundaries of certified areas. Explanations for the heterogeneity of impacts ranges from poor data quality and disparities in research design to the different trade-offs that standard systems face within the local contexts of implementation. In recent years, there have been studies using rigorous statistical methods to compare forest cover change in FSC-certified and non-certified concessions in Central Kalimantan, Indonesia, Mexico, Peruvian Amazon, and Cameroon. Only in Kalimantan was FSC certification found to have large effects on reducing forest loss. The low intensity of logging practices in the tropics (except for Indonesia) and the correlation of FSC with more active management (Cameroon, Peru) partially explain the limited effects observed. When researchers unpack the standards to examine individual management practice, positive effects are often found. For example, a study on forest management plans and FSC certification in the Congo Basin argues that in the period between 2000 and 2010, deforestation was 74% lower in concessions with a management plan compared to those without. This was associated with actions regulating access to concessions, such as closing logging roads, to limit hunting and illegal timber harvesting.

Beyond certification, wider corporate commitments to zero deforestation have not yet achieved the expected outcomes. Constraints include limited uptake by suppliers in the upstream value chain, market segmentation that allows for supply to be channelled to buyers with no commitments and difficulties for traceability of smallholders, as well as the need to align with the public sector and improve coordination among all the value chain stakeholders. For example, the agreement in the cattle sector in Brazil has contributed to slowing deforestation, but its impact was limited due to its focus on direct suppliers; this indirectly led to leakage and laundering due to the lack of control of indirect suppliers (see Box 4.3).

In comparison, legal actions to impose land moratoria, combined with business sector commitments, have proven more successful. The Soy Moratorium has halted the expansion of soy’s footprint in the Amazon biome, despite some concerns that it may have displaced pressures to the Cerrado (See Box 4.3). In addition, some consider the moratorium on oil palm expansion in primary forests and peatlands in Indonesia effective in reducing primary forest loss and peatland conversion, although loopholes have been pointed out by some environmental NGOs. In Cambodia, the moratorium on new economic land concessions initially increased deforestation in the short run as companies rushed to clear forests to secure concession rights before the ban came into effect, but is generally considered a step in the right direction.

The last decade has brought an expansion of timber legality in tropical timber producing and importing countries. It is difficult to empirically measure the effects of trade regulations, such as the EUTR and Lacey Act, on tropical deforestation because of several challenges. Illegal timber may be laundered into legal supply chains, implementation of the legislation varies, and stricter legality requirements in one importing market may divert

Box 4.3 Market-based agreements to halt deforestation in the Brazilian Amazon

Soy Moratorium

Between 2001 and 2006, soy planted area expanded by one million ha in the Brazilian Amazon. The Soy Moratorium, which limited soy-driven deforestation in the Amazon biome, was agreed in 2006. In the two years preceding the agreement, 30% of soy expansion occurred through deforestation rather than by replacement of pasture or other previously cleared lands. By 2014, deforestation for soy had decreased to about 1% of expansion in the Amazon biome. However, some critics argue that this apparent success is due to the availability of land already converted to pasture, and that soybean expansion on pasturelands tended to displace cattle into new forests. An additional criticism is that the Soy Moratorium may have led to a leakage effect into the Cerrado, where natural conversion to soy has continued. An analysis of the likely impacts associated with expanding the Soy Moratorium from the Brazilian Amazon to the Cerrado suggests that it would prevent the conversion of 3.6 million ha of native vegetation by 2050.

Cattle agreements

Multiple policies have aimed to govern uncontrolled expansion of extensive cattle ranching linked to land encroachment and land speculation, while also supporting intensification of production systems. The most significant are the zero-deforestation cattle agreements signed by meatpacking companies with the state of Para in 2009, and extended to three other states (Mato Grosso, Rondônia and Amazonas) in 2013. The cattle agreements have contributed to reducing deforestation, but some properties not included in the cattle agreements continue to supply beef originating from lands affected by deforestation. A study in Para found that slaughterhouses covered by the agreement did try to avoid purchasing from properties with deforestation, which was not the case before. However, a major difficulty has been to control indirect suppliers, and “cattle laundering” has become a widely adopted practice. Recent analysis confirms that indirect suppliers contribute more to deforestation, which is more likely to occur in remote areas where oversight is lower, as is the risk of ranchers being penalized for clearing.
illegal timber to more lenient markets (including domestic markets). The European Commission has acknowledged the weakness of the EUTR in addressing deforestation and forest degradation[143], and in 2019 signalled its intention of “Stepping up EU Action to Protect and Restore the World’s Forests”[225]. An evaluation of the EUTR pointed out a number of shortcomings, including disproportionately light fines and penalties, limited capacity of customs agencies and low transparency[226]. Under the US Lacey Act, only three companies have ever been investigated for violation while it is estimated that a large amount of illegal timber continues to flow into the US market. In terms of displacement, there is a trend of Asian markets replacing the EU and the US as top timber export destinations[227]. Nonetheless, where these trade regulations do make a difference it is by sending a market signal to wood processing hubs such as China, Viet Nam and Malaysia to improve timber legality in their respective jurisdictions.

Incentive-based mechanisms such as PES approaches have strong potential but have not always delivered the expected outcomes. The main views on PES suggest that they depend on the interplay between context, design and implementation[180]. PES projects across deforestation fronts vary significantly in design and implementation. Systematic analysis on PES initiatives has raised doubts about how much they have contributed to additional, permanent deforestation reduction, since conditionality requirements are often lacking during implementation of these initiatives[116]. Some pre-conditions that have to be in place for PES initiatives to work relate to information, economics, culture and institutions. Land stewardship with “the right to exclude third parties” has been highlighted as important[223], which argues in favour of securing tenure rights for IPLCs. More serious consideration needs to be given to what preconditions need to be met if incentives for landowners are to become an effective mechanism for conservation[224].

Building on PES, REDD+ was conceived to provide compensation to farmers and forest users, yet pilot projects have shown very diverse outcomes in reducing deforestation and delivering positive impacts for farmers. The lack of a global agreement has inhibited the potential of REDD+ to reduce forest-related carbon emissions as originally expected[223]. Pilot projects have included many types of actions, from supporting protected areas, to direct incentives (such as PES) to forest dwellers, supporting farmer uptake of best production practices, and enhancing enabling conditions such as recognition of local tenure rights[180]. A review of 45 articles looking at the outcomes of REDD+ interventions on the ground argues that these projects achieved moderately encouraging results on carbon/land-use outcomes, but insignificant results on local people’s wellbeing[222]. Yet it is still hard to draw definitive conclusions since many of these studies lacked a counterfactual scenario to measure REDD+ impacts and did not adequately balance carbon versus non-carbon outcomes. Beyond these pilot projects, a major issue that remains in country-level REDD+ programmes is what type of combined interventions have the potential to lead to better outcomes for both carbon emissions or removals, and co-benefits translated into local economic benefits. Some argue that while REDD+ has supported sustainable land-based investments, it struggles to compete with business-as-usual incentives to convert forests, and has still not created the institutional conditions nor mobilized enough finance to unlock its potential to trigger transformative actions on a large scale[220].

Various landscape approaches combine supply-chain and territorial-based interventions, relying on public and private partnerships to deliver their outcomes, yet there is still little work to assess these outcomes in practice and many initiatives are still at the initial stages. Available preliminary analysis has identified some gaps, which differ depending on the main purpose of the landscape projects. For example, sustainable landscape finance projects in Brazil and Peru show a mismatch between the investors looking for social and environmental outcomes beyond financial gains and the supply side of sustainable land-use investments on the ground[228]. Other initiatives to enhance sustainable supply at the landscape level have emerged outside formal state systems, as in Indonesia, yet face challenges to get integrated more formally into existing executive systems; thus their impact is mediated by complex decision-making processes and wider policy frameworks[229]. Different versions of these landscape-type of initiatives, involving public and private stakeholders at the sub-national level, are being reconceptualized under jurisdictional approaches[116]. A recent review suggests there has been little examination of sub-national governments’ authority to make policy decisions to slow deforestation; they often lack decision-making power on land ownership, permits for extractives and protected areas[230].

While not captured in our analysis of deforestation fronts, proposals have emerged on the demand side that are primarily related to three types of efforts. The first relates to the need for regulations in consuming countries to reduce the footprint of their consumption by supporting deforestation-free supply chains, which has been built into the EU Communication (July 2019) on Stepping up EU Action to Protect and Restore the World’s Forests. The second is advancing more responsible finance through financial institutions integrating environmental, social and governance (ESG) criteria into their lending operations. Examples include financial regulators from emerging market countries (e.g. China, Indonesia, Peru and Brazil) cooperating in the Sustainable Banking Network, and on the other side, a group of financial regulators, mostly from European countries, collaborating in the Network for Greening the Financial System (see Box 4.4). The third relates to improving the visibility and ambitions of nature-based solutions in NDCs, which includes reducing emissions from deforestation and forest degradation as part of a wider range of interventions[229]. The latter are evolving agendas that are not necessarily connected to each other, some of which have not yet translated into actions in the deforestation fronts.
Box 4.4 The role of finance in stopping deforestation
By Jan Willem van Gelder, PROFUNDO

The finance sector plays a crucial role in (avoiding) deforestation. To operate and expand, agricultural, forestry, mining and energy companies seek capital from a variety of financial institutions: commercial banks, investment banks, (multilateral) development banks, asset managers, private equity funds, pension funds, insurance companies and others. As the provided capital is essential for the operations and – especially – expansion plans of these companies, their financiers potentially have strong leverage: they can dissuade these companies away from deforestation-linked activities towards a more sustainable development path.

How can financiers use their leverage?

What financiers need to do to use their leverage to avoid deforestation has crystallized in recent years. First, they should develop responsible investment and credit policies, which set clear sustainability criteria on the companies and projects they are prepared to finance. Second, they need to train staff to understand the issues, collect data on potential investee companies and screen these companies rigorously against the policy criteria. Third, they can use a range of instruments to implement their policies: exclusion of worst offenders, complemented by engagement – during shareholder meetings and behind closed doors – with other companies to help them change their practices, resulting in agreements on action plans and clauses in loan contracts. Finally, they should monitor progress, publish their results, exert pressure on their peers and call financial regulators and other government agencies to action.

It is expected that when a critical mass of relevant financial institutions takes such steps, the companies operating in forest-risk sectors will feel the pressure from their shareholders and creditors to change their practices, investment plans and procurement policies. As it is crucial for these companies to maintain a good relationship with their investors and creditors to continue to keep access to sources of capital. Expanding this pressure could become an effective way forward in the absence of other alternative sources of finance.

Do we see progress? Is the system changing?

Momentum in the financial sector is growing to take a more active, leading role in the necessary transformation of the global economy towards a more sustainable development path. The forerunners, collaborating in initiatives such as the Principles for Responsible Investment (PRI) and the Principles for Responsible Banking (PRB), are taking action, and opportunities to press laggards in the finance sector are increasing as well. Peer pressure plays a key role here, as financial institutions often need to cooperate in lending and underwriting syndicates, and financial institutions do not want to lose customers to banks with lower standards.

Financial regulators have recently started to encourage financial institutions to integrate ESG criteria in their financing and investment decisions, thereby creating a level playing field. Financial regulators from emerging markets such as China, Indonesia, Peru and Brazil, cooperating in the Sustainable Banking Network, have taken steps in this direction. Another group of financial regulators, mostly from European countries, collaborate in the Network for Greening the Financial System; though aimed initially at finance for climate change challenges, this has expanded to address biodiversity loss as well. Combined, these trends show an acceleration in the uptake of responsible investment and credit practices in the finance sector, which will undoubtedly pressure companies operating in forest-risk sectors to refrain from further deforestation.
Natural Cerrado vegetation surrounded by soy crop. Cerrado, Brazil.
© Peter Caton / WWF-UK
4.4 WHY, DESPITE A MULTITUDE OF RESPONSES, DOES DEFORESTATION CONTINUE?

Despite significant international and corporate commitments and declarations, deforestation and forest degradation is still increasing, or at best, not experiencing the level of reductions necessary. This demonstrates that the actions implemented to oppose it are not enough. Our report outlines in detail the specific pressures and responses available in each deforestation front, where halting deforestation will require significantly more effort. While international policy and corporate frameworks help to organize these response options, they must be able to mobilize concrete actions and achieve impact within the landscapes experiencing the diverse and persistent drivers of deforestation.

The eight approaches and 13 responses introduced in sub-section 4.1, and analysed above, interact in complex ways, which makes it difficult to isolate their specific role in halting deforestation and forest degradation. Table 4.3 offers a synthesis of the main strengths and weaknesses of the different approaches as informed by the review of responses implemented in the 24 deforestation fronts, and insights from our additional literature review. Due to their different impact pathways, levers of change and targets, no single approach alone can address the indirect and direct causes of deforestation. Enhanced integrated approaches are needed, yet with growing consideration of the local political economies and market and institutional configurations in each of the different fronts with particular attention to the specific needs and interests of local stakeholders.

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
<th>Undesired effects</th>
<th>Ways forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-target oriented approaches</td>
<td>Securing the rights of indigenous peoples and local communities</td>
<td>Securing conservation of biodiversity-rich forest areas</td>
<td>Table 4.3 Strengths, weaknesses and ways forward across approaches to halt deforestation</td>
</tr>
<tr>
<td>Strengths</td>
<td>Weaknesses</td>
<td>Undesired effects</td>
<td>Ways forward</td>
</tr>
<tr>
<td>• Reinforces local values and local management practices, and institutions</td>
<td>• Risks of elite capture</td>
<td>• Not foreseen undesired effects, although some risks of IPLCs not able to resist external pressures may exist depending on existing local capacities and increasing threats to indigenous peoples and environmental human rights defenders fighting to preserve their rights</td>
<td>Expand the recognition of local tenure rights to IPLCs</td>
</tr>
<tr>
<td>• Supports a growing engagement of indigenous peoples and local community voices in national and global level policy for enabling conditions</td>
<td>• Success depends on pre-existing authority and local accountability systems</td>
<td>• Limited options for enhancing livelihoods</td>
<td>• Facilitate the means for effective natural resource management in IPLC lands</td>
</tr>
<tr>
<td>• Enables the self-strengthening of local governance systems and sustainable economies</td>
<td>• Attitudes and priorities may change over time</td>
<td>• Attitudes and priorities may change over time</td>
<td>• Provide legal and institutional means for avoiding encroachment and conflict resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No control of external pressures outside protected or OECMs</td>
<td>• Actively embrace OECMs under wider inclusive conservation approaches to expand area-based conservation while supporting local livelihoods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dependence on regular external flow of resources</td>
<td>• Identify and allocate secure funding sources for the effective management of protected areas and OECMs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Susceptible to government policy changes</td>
<td>• Not able to resist external pressures, with few options to enhance protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• May limit access to sources of livelihood for local populations with customary rights in lands classified for protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Some risks of IPLCs not able to resist external pressures, with few options to enhance protection</td>
</tr>
</tbody>
</table>

Table 4.3 Strengths, weaknesses and ways forward across approaches to halt deforestation
<table>
<thead>
<tr>
<th>Ensuring legality of production and trade</th>
<th>Enhancing sustainability of supply chains</th>
<th>Ensuring maintenance of environmental services (ES)</th>
<th>Mainstreaming responsible finance</th>
<th>Achieving results-based payments under REDD+</th>
<th>Stimulating transitions to more sustainable jurisdictions/landscapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Defines the rules of the game with combination of incentives and sanctions, and systems in place to ensure compliance</td>
<td>• Monitoring and auditing systems, and traceability to ensure the credibility of sustainable supply</td>
<td>• Contributes to creating enabling institutional conditions and MRV systems</td>
<td>• Large influence in consumer goods companies, retailers and traders upstream in value chains</td>
<td>• Formalized agreement and approval of a voluntary mechanism under Art. 6 of Paris Agreement</td>
<td>• Fosters meaningful partnerships among public and private actors around common goals at a scale that matters</td>
</tr>
<tr>
<td>• Heavy focus on procedural compliance rather than outcomes</td>
<td>• Low uptake of good practices</td>
<td>• Lack of stable financial flows at scale to reverse business-as-usual incentives, unless public funds are used</td>
<td>• High penetration in market segments better complying with sustainable practices</td>
<td>• Difficult coordination to get ready for obtaining results-based payments</td>
<td>• Disparate perspectives across actors requires political negotiation around long-term goals</td>
</tr>
<tr>
<td>• Lack of harmonization between national and sub-national regulatory frameworks</td>
<td>• Voluntary standards not designed to have impact outside of certified units</td>
<td>• Transaction costs associated with ES market development</td>
<td>• Low penetration in micro-finance, widely used for smallholders</td>
<td>• Lack of enough financing to motivate actions at scale</td>
<td>• Progress in some jurisdictions may trigger pressures on forests in other jurisdictions, thus leading to leakage</td>
</tr>
<tr>
<td>• Difficult to adapt regulations to support adaptive governance</td>
<td>• Limited additionally since adoption tends to be pursued by those already performing well</td>
<td>• For carbon, limited regulations setting up cap-and-trade schemes</td>
<td>• Limited influence in informal economies</td>
<td>• Long-term process for moving from experimental and pilot initiatives to market-based transactions under Paris Agreement</td>
<td></td>
</tr>
<tr>
<td>• May exclude or work against producers or local populations unable to comply with regulations, thus reproducing situations of illegality or informality</td>
<td>• Difficult to trace smallholders</td>
<td>• Deforestation may reduce demand for labour from poor households</td>
<td>• May lead to increased costs of finance for non-complying producers, thus limiting their opportunities to take up more sustainable practices</td>
<td>• Risks of unequal benefit sharing among disparate actors with differentiated responsibilities</td>
<td></td>
</tr>
<tr>
<td>• Improve coordination between national and sub-national levels</td>
<td>• Leakage into markets with low environmental concerns</td>
<td>• PES may increase the value of land, which may lead to displacement of poorer households</td>
<td>• May lead to increased costs of finance for non-complying producers, thus limiting their opportunities to take up more sustainable practices</td>
<td>• Unbalanced sharing of costs and benefits from collaborative interventions</td>
<td></td>
</tr>
<tr>
<td>• Adopt systems and mechanisms for governing through goals, and defining goals in participatory ways</td>
<td>• Value chain segmentation</td>
<td>• Exclusion of non-performing smallholders</td>
<td>• May lead to increased costs of finance for non-complying producers, thus limiting their opportunities to take up more sustainable practices</td>
<td>• May lead to more powerful actors imposing their views without active social participation</td>
<td></td>
</tr>
<tr>
<td>• More meaningful partnerships with the private sector under jurisdictional approaches</td>
<td>• Tailored incentives for suppliers, including smallholders, to upgrade their production practices across supply chains and jurisdictions</td>
<td>• Deforestation/zero conversion criteria in voluntary standards</td>
<td>• More explicit consideration of nature-based solutions that contribute to mitigation and adaptation while protecting intact/primary forests, management and restoration options</td>
<td>• Clarify political visions for long-term climate financing under REDD+ mechanisms</td>
<td></td>
</tr>
<tr>
<td>• Link corporate commitments to jurisdictions with active jurisdictional partnerships</td>
<td>• Include specific zero deforestation/zero conversion criteria in voluntary standards</td>
<td>• Embrace a landscape approach while reducing costs for uptake of voluntary standards</td>
<td>• Accelerate the uptake of responsible investment and credit practices in the finance sector</td>
<td>• Link corporate commitments to jurisdictions with active jurisdictional partnerships</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tailor incentives for farmers</td>
<td>• Stimulate wider adoption of accountability frameworks</td>
<td>• More explicit consideration of nature-based solutions that contribute to mitigation and adaptation while protecting intact/primary forests, management and restoration options</td>
<td>• Advance tailored financial schemes at the landscape level for scaling up sustainability</td>
<td>• Expand commitments to widen the jurisdictional scale of actions</td>
</tr>
<tr>
<td></td>
<td>• More explicit consideration of nature-based solutions that contribute to mitigation and adaptation while protecting intact/primary forests, management and restoration options</td>
<td>• Layer various incentives</td>
<td>• Better capture and share audit data especially pertaining to outcomes and impacts</td>
<td>• Refine sustainable finance taxonomies in the land sector</td>
<td>• Advance the monitoring of progress, and foster learning across jurisdictions with active partnerships</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• More explicit consideration of nature-based solutions that contribute to mitigation and adaptation while protecting intact/primary forests, management and restoration options</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTEGRATED APPROACHES
Below, we summarize the main findings from our analysis of how effective different approaches, and their corresponding responses, have been in halting deforestation and forest degradation.

- **Securing the rights of indigenous peoples and local communities** has been effective. However, tenure rights alone are not enough for IPLCs to realize the economic and social benefits of their rights. Empowering IPLCs, and their capacities to self-strengthen and manage their lands and territories, and to build the partnerships needed to deliver sustained positive impacts over time should be a priority. In addition, many IPLCs require legal and institutional support to maintain and protect their acquired rights against external threats.

- **Securing conservation in biodiversity-rich forest** through area-based responses (e.g. protected areas) has proven effective in reducing threats to forests, yet cannot avoid leakage into other areas. Conservation areas require compliance monitoring and enforcement of stipulated rules, as well as regular financial flows to ensure effective management. Linking with IPLCs under negotiated agreements has potential to expand conservation areas as OECMs.

- **Ensuring legality and enforcement** has often been limited to monitoring legal compliance rather than penalizing illegal actors. Significant efforts have been spent on defining legal procedures to enforce land-use and forest management regulations. Effective enforcement requires long-term political will and resources for continued monitoring. Moratoria have a short-term impact, yet to be sustained need involvement of the business sector.

- **Enhancing sustainability of supply chains** has mobilized efforts of downstream corporations, but with little commitment from upstream suppliers. Certification has been used to advance sustainability practices, yet it has had limited uptake due to costs and limited response of end consumers. Additional efforts to achieve zero deforestation/zero conversion have sought to improve traceability across third-party suppliers. However, traceability comprising entire supply chains has proven difficult, mainly in cases involving smallholder suppliers who connect to markets through informal networks.

- **Ensuring maintenance of environmental services** through payments or compensation schemes for biodiversity, carbon and water, while effective in localized project-based interventions, have been unable to achieve impacts at scale. More ambitious state-sponsored programmes have set up larger-scale funds for reaching a significant number of farmers, yet in some cases those programmes have not achieved additional conservation results.

- **Mainstreaming responsible finance** is progressively leading to international banks incorporating zero-deforestation targets into responsible investment and credit policies. Guidelines on responsible finance are being adopted by some regulatory agencies in forest-rich countries. In addition, several schemes for de-risking finance have been put in place to support farmers to improve their practices, leading to increasing yields while reducing pressures on forests.

None of these are perfect on their own and progress has been most successful when different approaches are combined. As mentioned, REDD+ and jurisdictional/landscape approaches may offer integrated long-term perspectives for halting deforestation and forest degradation.

- **REDD+ results-based payments and results-based finance** have emphasized public policy enhancement for reducing carbon emissions with more robust MRV systems, but it has proven to be difficult under current frameworks to affect the political powers and economic forces shaping business-as-usual land use. Revised NDCs could include more ambitious targets for reducing deforestation and forest degradation.

- **Jurisdictional-based partnerships** have emphasized transitions to more sustainable and inclusive low-carbon economies at the sub-national level. Important components include meaningful public and private partnerships, de-risking finance schemes, and wider uptake of sustainability practices with clearer responsibilities for government bodies at the jurisdictional level. This approach is promising but more knowledge is needed on its actual effectiveness and challenges.
4.5 MAIN CHALLENGES AHEAD

- **Not all conservation strategies for halting deforestation work everywhere.** The effectiveness of individual responses depends on the local context, including enabling conditions, baseline practices, types of deforestation pressures and trade-offs faced by local actors. As a result, many forest conservation strategies face challenges with scaling up. There is a need to tailor interventions to local contexts, and to embrace the values and interests of local stakeholders.

- **Misalignment of responses across approaches.** Some responses encouraging more sustainable management of resources may be offset by market signals or investment policies that incentivize more of the same. Alignment among the different approaches is needed to produce reinforcing effects. For example, incentives in supply chains have to be aligned to area-based interventions.

- **Disconnected interventions tend to reinforce silo approaches.** Interventions tend to focus on one or other driver, even when these are linked (e.g., commodities, infrastructure, mining, finance), and forest-based interventions are pursued independently from other relevant interventions in the landscapes, for example on wildlife or freshwater.

- **Conflicting views and interests across actors.** Different actors, with competing perspectives and interacting on non-level playing fields, tend to embrace different approaches. In addition, the lack of coordination between national and sub-national levels also tends to negatively influence progress. Building common visions and goals is important – external interventions from NGOs or financial institutions may play an important catalytic role.

- **Growing stringency tends to clash with inclusivity.** Standard systems and public and private policies tend to get more stringent in response to the demands of end-users, but this may conflict with social inclusivity if costs for producers increase. Solutions for upscaling the uptake of good practices need mechanisms for transferring benefits to upstream suppliers.

- **Persistent shadow economies and corrupt behaviours.** The lack of mechanisms to curtail shadow economies and corrupt behaviours works against efforts to address deforestation and forest degradation. In addition, land speculation has proved to be strongly related to the expectation of future profits from the expansion of agricultural frontiers. These social behaviours are difficult to dismantle since may benefit local and national elites.

- **Policy inflation and capacity building needs.** The proliferation of approaches with no clear connections between them generates a massive need for capacity building, particularly in low-income forest-rich countries. Capacity building is critical for effective policy implementation, monitoring and reporting, as well as learning from the success or failures of measures and developing adaptive management.

- **Continued poverty drives unsustainable resource use.** Liquidating forest assets, such as felling timber for sale or clearing forest to increase the area for agriculture, is often a route out of extreme poverty, even if it has knock-on effects for wider society. Until fundamental social inequities are addressed, progress in forest conservation will remain fragile.

The limits of existing approaches call for greater integration and innovation in responses that are better tailored to specific contexts. This entails policies and initiatives targeting specific forest contexts (e.g. remote core forest areas, frontier forests, and forest-agriculture mosaics) with the right mix of incentives and regulations, and trying to encompass wider jurisdictional approaches. Enhancing alignment between state and non-state actors in specific territories has potential to address critical constraints.

Even this, however, is unlikely to be enough, and more comprehensive solutions with long-lasting effects are needed. New perspectives on transformative change are calling for system-wide responses to tackle the indirect drivers of deforestation. These types of responses are still emerging. Notably, calls have been made to promote changes towards more sustainable and efficient food systems accompanied by shifts to healthier diets. This could be supported by actions to transform the financial system (multilateral, public and private) to divert resources away from conventional agriculture and other activities that drive deforestation and habitat loss, and towards sustainable production and positive environmental outcomes. Another more general perspective calls for changes in development paradigms to reduce overconsumption, and shifts in values and social norms to embrace the conservation of nature as part of wider societal attempts to sustain biodiversity, avoid the impacts of climate change, and restore the health of our planet.
5. AN AGENDA FOR ACTION

There have been many attempts to reduce forest loss since the early 1980s. All have strengths and weaknesses. While none has fully succeeded in halting deforestation and forest degradation, losses would have been even greater without them – some ecosystems would have entirely disappeared and species would have become extinct.

- **1980s:** primary emphasis on lobbying for state actions through legislation and protected area creation
- **1990s:** increased attention on working with the private sector through codes of conduct, certification and other voluntary measures
- **2000s:** recognition of the importance of bottom-up approaches, working with local and indigenous communities, and directly with consumers
- **2010s:** renewed attention on international processes such as the Convention on Biological Diversity (CBD; Aichi targets) and UN Framework Convention on Climate Change (UNFCCC), and private and public voluntary commitments and pledges to advance zero deforestation
- **2020:** focus on the development of jurisdictional partnerships, and other integrated approaches and solutions to scaling up sustainable consumption and production, with an emphasis on food systems and responsible finance.

Responses usually address direct pressures; it has been more challenging to tackle the larger indirect pressures, such as poverty, corruption, over-consumption and economic growth at the expense of forests. The Covid-19 pandemic may provide an opportunity for the kind of radical, transformative changes that are essential, though only if all stakeholders fully understand the value of safeguarding nature and forests.

This is a time to think big but also to not lose sight of the importance of consolidating the more modest progress made to date. Bringing together what has been learned over the last 40 years into a coherent, integrated approach needs to be the priority.

TYPES OF RESPONSES

Our analysis shows there is no single approach that can help halt deforestation globally. Solutions need to be context-specific, take into account the complexities of the deforestation front and involve multiple stakeholders. All changes require inputs from many levels of society.

The following section highlights some changes that are needed most urgently, noting that this list is not comprehensive and much more action is needed at the consumer level – for example a shift in diets and reduction in food waste.

IMMEDIATE: Changes to start working towards now

Primarily with communities: recognizing values and taking back control

1. **Addressing tenure issues for indigenous peoples and local communities (IPLCs): aiming to secure tenure rights of IPLCs on their lands and territories.** There is much evidence that suggests IPLCs often retain forest cover and good forest condition in areas under their management. Identifying the links between local management and sustainability, supporting these through policies and where necessary finance, and building wider coalitions are key steps.

 - **Immediate action:** expand the recognition, demarcation, and titling of IPLCs lands and territories, including their efforts to strengthen their traditional knowledge and governance systems that will expand the areas of forests under legally secured control of IPLCs.

2. **Investigating other effective area-based conservation mechanisms (OECMs) and territories and areas conserved by indigenous peoples and local communities (ICCAs): looking at non-traditional ways of securing forests.** Working with communities through field programmes and development initiatives offers opportunities to expand non-traditional ways of protecting natural and semi-natural forests and other valuable ecosystems.

 - **Immediate action:** identify suitable places for OECMs and ICCAs in key deforestation fronts and focus field programmes on working with IPLCs to bring these into conservation systems.

3. **A wider focus on ecosystem services:** building support for retaining forests to provide water, food, erosion control and other ecosystem services. There is strong evidence that proper recognition and valuation of ecosystem services can help build local support for retention of natural ecosystems.

 - **Immediate action:** build on experience gained in existing payment for environmental services (PES) and REDD+ schemes to introduce similar programmes throughout the deforestation fronts.
4. **Moratoria that takes a whole landscape, all ecosystems and global approach: ensuring that commitments in one place do not undermine conservation elsewhere.** Moratoria can be counter-productive if they simply shift conversion elsewhere. An integrated approach must look at conservation priorities in all ecosystems.

- **Immediate action:** agree and introduce moratoria for all commodities and ecosystems in remaining natural forests, grasslands and savannahs.
- **Immediate action:** employ traceability to ensure avoidance of products from illegal conversion or extraction.

5. **Scaling up sustainable consumption and production from site to landscape, from one commodity to many commodities, from green consumers to all consumers and into public and private finance.** This involves corporate commitments and government legislation, including due diligence. The EU Green Deal commits to imports and value chains that avoid deforestation and degradation. Site-level commodity certification needs to develop more broadly into commitments and credible verification for all significant uses. Jurisdictional approaches and landscape standards can be used, and public procurement policies help build sustainable systems. Improving access for smallholders is a critical step for several certification schemes.

- **Immediate action:** support landscape and jurisdictional plans for sustainable production that avoids further conversion of natural forest.
- **Immediate action:** invest in sustainable agricultural production at landscape and jurisdictional level with a special focus on supporting smallholders.

6. **Reducing pressures on forests through civil society action: helping to encourage wider societal shifts towards lower consumption, sustainable diets and consumer choice.** Environmentally-conscious consumers have been responsible for driving change in many countries, through letter-writing campaigns, petitions, boycotts, direct support for sustainable products, among others. As awareness of environmental issues grows, citizens everywhere can play their part in combating deforestation.

- **Immediate action:** protect nature where you live – plant the right trees in the right places.
- **Immediate action:** avoid products linked to deforestation – know what you consume and eat and look for labels that show where your products come from.
- **Immediate action:** use your voice – ask for policies that protect and restore forests, and for actions that protect the human and economic rights of IPLCs.
Primarily with governments: integrating forest conservation into every level of government

7. New approaches to area-based conservation: using a range of tools to ensure the majority of remaining natural ecosystems remain intact. Many governments resist more protected areas, which are often ineffective or wrongly located. But the need for more protection is widely recognized, as is the importance of embracing more inclusive conservation linking socio-cultural perspectives and conservation actions. The designation of OECMs opens new opportunities for conservation and finding common ground with multiple stakeholders.

- **Immediate action**: take active steps to increase connectivity and management effectiveness in the existing protected area network.
- **Immediate action**: investigate with governments opportunities for OECMs as a means of extending the area under conservation.
- **Immediate action**: embrace actions emphasizing cultural connectivity as well as biological connectivity in IPLC lands and territories.

8. Ensuring effective legislation, monitoring and traceability throughout the value chain: to allow consumer companies to guarantee product sustainability. Consumer countries can help address deforestation by blocking export options for products resulting from recent conversion. The particular challenges of addressing illegality should not be understated, with increased emphasis on enforcement policies. Producer countries are also recognizing the need to tackle lost revenues and lost ecosystem services due to deforestation.

- **Immediate action**: introduce, strengthen and better enforce due diligence legislation in both consumer and producer countries, and in those countries that are both significant producers and consumers.
- **Immediate action**: increase efforts to implement and enforce measures against the illegal timber trade.
- **Immediate action**: in consumer countries, introduce and support strong policies and legislation to ensure imports and procurement of commodities are deforestation- and conversion-free.
- **Immediate action**: in consumer countries, provide and scale up support to producer governments and landscapes for a transition towards sustainable, deforestation-free agricultural production, with a focus on smallholders.

- **Immediate action**: in producer countries, support sustainable, deforestation-free agricultural practices and better land-use planning to identify appropriate areas for agricultural production outside forests and other ecosystems.

9. Integrate nature-based solutions more effectively with climate action: to unite mitigation of climate change with biodiversity conservation and ecosystem services. Governments need better integration of nature-based solutions into nationally determined contributions (NDCs) under the UNFCCC. More climate finance should be allocated to forest conservation, which currently receives less than 1.5%. Voluntary carbon markets are growing through company commitments and investor action. Strong messaging from governments and the public that climate neutrality is an expected part of business will be needed to ensure that ecosystem markets continue to grow.

- **Immediate action**: increase proportion of climate finance allocated to forest conservation.
- **Immediate action**: include quantified deforestation, conservation and restoration targets in NDCs and align with national biodiversity strategies and action plans (NBSAPs).

10. Support sub-national and multistakeholder action: bringing sub-national governments centre stage. National government inaction is being countered at sub-national level through initiatives such as the Under 2 Coalition, Governor’s Climate and Forest Task Force and Rio Blanco Declaration to cut deforestation by 80%. Sub-national governments often control planning, taxation, budgeting and roads but not usually mining, policing or land tenure. In the deforestation fronts, sub-national governments have the most opportunities in Brazil, Indonesia and Malaysia, and least in Angola, Madagascar, CAR and Gabon. Effective cooperation with sub-national governments should be a key component of global responses.

- **Immediate action**: increase and channel public finance to support sub-national government actions that in particular support alternative, deforestation- and conversion-free economic development pathways.
- **Immediate action**: support landscape and jurisdictional plans that connect multistakeholder spatial plans with adequate incentives and policy power for implementation.
Primarily with the global community: setting ambitious goals for a sustainable planet.

11. Making targets count: using new and existing global targets to drive forward conservation commitments. New targets from the CBD in early 2021 should focus on retaining existing natural forests and other native ecosystems, in both extent and intactness. But this process is driven by political whims; failure should not cause despair. There are already many targets, through the UNFCCC, the Convention to Combat Desertification (UNCCD), the Sustainable Development Goals (including many social targets), the UN Forum on Forests (UNFF), and voluntary initiatives like the New York Declaration on Forests (NYDF) and the Bonn Challenge, which, if properly implemented, would address the problems outlined here. Science-based targets are an avenue to engage corporate actors. A recent groundswell of interest in climate and environmental issues from youth groups, religions and industry could also help drive forest-friendly commitments.

- **Immediate action**: advocate for a strong target on retention of natural/primary forests under the new CBD Global Biodiversity Framework, along with strong forest indicators and concrete policies or sectoral actions that address the drivers of deforestation, including commodity production and climate change.

- **Immediate action**: integrate forest conservation more closely into existing global targets such as land degradation neutrality under the CBD, the Sustainable Development Goals (SDGs) and the UNFCCC.

MEDIUM TERM: Changes that need to start now but have a longer time-horizon

1. **A coordinated global response**: integrating multiple international, national, commercial and civil society initiatives and partnerships around a single global vision. Calls for a UN forest convention have been resisted; the UN Forum on Forests has little influence (contributions are “voluntary” and adequate finance not available) and the FAO focuses on monitoring and sustainable management. Some commentators call for a “Marshall Plan” for forests, ideally from the UN, possibly jointly from the FAO and the three Rio conventions (CBD, UNFCCC and UNCCD) [29]. Cooperative action by several governments is an option, along the model pioneered by the Ministerial Conference for the Protection of Forests in Europe (now Forests Europe). Any such response needs to include all stakeholders.

2. **Actively restoring forests**: using the UN Decade on Ecosystem Restoration and the Bonn Challenge as vehicles to rebuild forest cover and quality in areas of the greatest loss. While forest restoration seldom reclaims exactly what has been lost, it can regain significant ecological integrity, ecosystem services and much biodiversity. Ramping up ambition to rebuild as well as conserve is an important element in any strategy.

3. **Developing fire-control strategies suitable for emerging conditions**: taking action to address the increasing risk and severity of forest fires. Around the world, new climate extremes mean traditional control mechanisms are no longer working. A global action-research programme is urgently needed to address the challenge, including fire prevention, management, planning and resource implications. IPLCs should be considered key actors and supported to strengthen their capacities for monitoring, preventing and controlling fires in their lands and territories.

4. **Building a post-COVID approach to nature**: that prioritizes climate change mitigation and management of ecosystem services and biodiversity. Research has shown that the risk of novel diseases emerging is higher in tropical forest regions that are experiencing land-use change, like many of the deforestation fronts. Post-COVID recovery programmes and stimulus packages should be aligned with the SDGs and actions to protect and restore forests. The health benefits of ecosystems must be integrated into political decision-making following the “One Health Approach”.

59
APPENDIX 1: DERIVING DEFORESTATION FRONTS FROM HOTSPOT ANALYSIS

An Emerging Hotspot Analysis was used to derive deforestation fronts using the ArcGIS Emerging Hot Spot Analysis tool. This analysis was undertaken in 10km² hexagons, within country boundaries, based on remote sensing data series from Terra-i data for Latin America, Africa, Asia and Oceania for the period from 2004 to 2017 for which validated data was available. We selected Terra-i deforestation data as a result of several criteria: 1) temporal resolution (16-day) which allows for a more detailed Emerging Hotspot Analysis than annual datasets; 2) spatial resolution of 250m is more relevant to detecting forest loss than changes in individual tree cover or canopies; and 3) the Terra-i algorithm uses neural network machine learning to identify vegetation loss due to anthropogenic causes.

Emerging Hotspot Analysis

The goal of this analysis was to assess the presence of deforestation fronts: areas where deforestation is significantly increasing and is threatening remaining forests. We selected the Emerging Hotspot Analysis to assess spatio-temporal trends of deforestation across the (sub-)tropics.

Spatial unit

We selected hexagons as the spatial unit for the analysis for several reasons. They have a low perimeter-to-area ratio, straightforward neighbour relationships, and reduced distortion due to curvature of the Earth. For the hexagon size we decided on a unit of 1,000 ha, which based on the resolution of the deforestation data (250m) meant that we could aggregate several deforestation events inside units over time. Hexagons that are close to or equal to the size of a deforestation event would mean there could only be one event before the forest unit is gone, limiting statistical analysis.

We processed over 13 million hexagons, and limited the analysis to only hexagons with at least 15% forest cover remaining (from the all-evidence forest map). This prevented including hotspots in agricultural areas or where all forest has been converted.

Hexagon Geometries:
Edge length: 1,961.887m
Perimeter: 11,771.324m
Area: 1,000 ha (10km²)

Outputs

This analysis uses the Getis-Ord and Mann-Kendall statistics to identify spatial clusters of deforestation which have a non-parametric significant trend across a time series. The spatial clusters are defined by the spatial unit and a temporal neighbourhood parameter. We use a neighbourhood parameter of 5km to include spatial neighbours in the hotspots assessment and time slices for each country described below. Deforestation events are summarized by a spatial unit (hexagons described below). The results comprise a trends assessment, which defines increasing or decreasing deforestation in the units determined at three confidence intervals (90%, 95% and 99%), and a spatio-temporal analysis classifying areas into eight unique hot or cold spot categories.

Our analysis identified seven hotspot categories (new, consecutive, intensifying, persistent, diminishing, sporadic, historical), which we combined into four classes of spatio-temporal trends to represent four major trajectories of changing deforestation:

<table>
<thead>
<tr>
<th>Hotspot type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>A location with a statistically significant increase in deforestation hotspots including the final time steps</td>
</tr>
<tr>
<td>Persistent</td>
<td>Statistically significant or uninterrupted hotspot with no upward or downward trend in clustering intensity</td>
</tr>
<tr>
<td>Sporadic</td>
<td>On-again then off-again hotspot</td>
</tr>
<tr>
<td>Old</td>
<td>At least 90% of the intervals show statistically significant hotspots, but these do not include the latter time steps.</td>
</tr>
</tbody>
</table>

Hexagons by region

<table>
<thead>
<tr>
<th>Region</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa and Madagascar</td>
<td>3,050,613</td>
</tr>
<tr>
<td>Asia</td>
<td>3,139,885</td>
</tr>
<tr>
<td>Europe and Russia</td>
<td>2,378,654</td>
</tr>
<tr>
<td>North America</td>
<td>2,125,240</td>
</tr>
<tr>
<td>South America</td>
<td>1,847,028</td>
</tr>
<tr>
<td>Oceania</td>
<td>919,216</td>
</tr>
<tr>
<td>Total</td>
<td>13,460,636</td>
</tr>
</tbody>
</table>
Data

For the evaluation of spatio-temporal trends of tropical deforestation we selected the Terra-i deforestation dataset to define the temporal deforestation patterns. Terra-i is a freely available monitoring system derived from the analysis of MODIS (NDVI) and TRMM (rainfall) data which are used to assess forest cover changes due to anthropogenic interventions at a 250m resolution. It was first developed for Latin American countries in 2012, and then expanded to pan-tropical countries around the world. Terra-i generates maps of vegetation loss every 16 days, from January 2004 until the present. This relatively high temporal resolution of twice-monthly observations allows for a more detailed emerging hotspots analysis, increasing the number of time steps or bins available for assessing spatio-temporal patterns than annual datasets. Next, the spatial resolution of 250m is more relevant for detecting forest loss than changes in individual tree cover or canopies and is better adapted to process trends on large scales. Finally, the added value of the Terra-i algorithm is that it employs additional neural network machine learning to identify vegetation loss that is due to anthropogenic causes as opposed to natural events or other causes. Our dataset comprised all Terra-i deforestation events observed between 2004 and 2017.

Temporal unit

The temporal unit or time slice was selected for each country according to the distribution of data. The deforestation data comprised 16-day periods between 2004 and 2017 for a total of 312 potential observation time periods. These were aggregated to time bins to overcome any seasonality in the detection of deforestation events (due to clouds). The temporal unit is combined with the spatial parameter (i.e. 5km) to create the space-time bins for hotspot analysis. For dense time series or countries with a lot of deforestation events (i.e. Brazil) a smaller time slice was used (i.e. three months, n=54) with a neighbourhood interval of eight months, meaning that the previous year and next year together were combined to assess statistical trends relative to the global variables. The rule we employed was that the time slice x neighbourhood interval was equal to 24 months, or two years, in order to look at general trends over the entire time period and prevent the hotspots analysis from being biased to short time intervals of a few months.

Deriving deforestation fronts from hotspot analysis

Locations with the highest incidence of deforestation were selected in the tropical and subtropical biomes in each country – since some countries may comprise more than one biome – with more than 355,000 ha covered by deforestation hotspot hexagons (Figure A.1). A total of 54 biomes by country were included. The tropical and subtropical Brazilian northeast was considered a single region, as well as tropical West Africa and subtropical West Africa. An exceptions was Australia where the temperate biome was retained because of deforestation dynamics identified in national assessments that we wanted to explore further. Southern tropical China shows a comparatively large number of hexagons classified as deforestation hotspots yet was not included in further analysis given the more complex dynamics of forest conversion and regeneration taking place in this region[244, 245].

Following the hotspot analysis, a visual interpretation of the spatial clustering of deforestation hotspots in the selected biomes by country was conducted in order to delineate the boundaries of deforestation fronts, which comprise all countries in which deforestation hotspots were detected. Deforestation fronts are places that contain an important area of remaining forests where there is a relatively larger spatial concentration or clustering of deforestation hotspots (measured in 10km² hexagons). As a result of this exercise, based on the Terra-i data, 30 countries were retained in the analysis.

Figure A.1. Biomes by country selected for the analysis of deforestation fronts, and total land area under deforestation hotspot hexagons aggregated by country. Our analysis is based on data from Terra-i for the period 2004-2017, available at www.terra-i.org/terra-i/data.html
APPENDIX 2: METHOD TO DERIVE FOREST COVER MAPS

An all-available data approach

The products used for the analysis of forest cover loss and forest fragmentation consist of a global total forest loss map during the period 2000-2017, and a global present forest map for 2018. The global forest cover map of 2000 was derived by adding the global present forest map and the global deforested area map during the period from 2000 to 2017. Instead of deriving the forest loss areas by subtracting the forest cover maps of the two different periods of time considered (2000 and 2018), the present forest cover map and the map of deforested areas were used to derive the forest cover map in 2000 (see Map A.1). Thereby, the forest cover map of 2000 is equal to the addition of the present (2018) forest cover map and the forest loss areas from 2000 to 2017 (Figure A.2). The rationales are that 1. the main purpose of this study is to determine forest cover loss; and 2. due to the advancement of technology, the forest detection closer to the present is more accurate than that in the past.

Multiple available remote sensing datasets were assessed in order to establish the likely extent of forests as of 2018. After analysing the quality of various remote sensing products, it became evident that in order to obtain a global assessment of forest cover loss, no single approach/data source would work everywhere. This is because each available dataset adopts different definitions of forest, uses different thresholds of tree canopy cover to define forest, and comprises different timeframes. Those discrepancies lead to different estimates of forest cover loss. In addition, each remote sensing product has its own limitations in terms of area of coverage and timeframes of analysis. In order to address these limitations, an all-available data approach was used as a way to undertake the forest loss assessment by having all the datasets compensating one another. Using this approach, each dataset can complement the other datasets, thus contributing to achieve higher accuracy in classification.

Analyses were carried out based on data availability taking into consideration the need to separate data into different regions. A majority vote based on the consensus theoretic classification method was developed to inform the condition of each location in terms of current forest presence. The higher the score, the higher the level of consensus among analytical approaches. For each map from the five different datasets employed, a minimum score was established to produce the maps of forest/non-forest, total forest loss areas, present (2018) forest cover, and 2000 forest cover. Because data quality and availability differ depending on the region, possible maximum and minimum score values differed accordingly. The final global maps were created by combining the binary maps of the boreal and non-boreal regions. A 30m resolution global surface water map was applied to mask out areas classified as seasonal or permanent water between 2000 and 2018.

Resolution: A 250m × 250m (6.25 ha) spatial resolution was selected for this analysis. This considered the global scope of this analysis, and the fact that multiple high-quality datasets used were derived from MODIS data. Additionally, a 6.25 ha area is large enough to attribute to it the functional characteristics of a forest (e.g. climate, ecology, ecosystem services) since the tree crown size in tropical forests can range between 5m to 25m. Others have also considered that a spatial resolution from 250m to 1km is an appropriate resolution for detecting land-use/land-cover change. For data with spatial resolution less than 250m, such as the GFC and JAXA ALOS Forest/Non-Forest maps (see below), the spatial resolutions of the deforestation maps were aggregated to 250m using the majority rule.

Canopy threshold: when using data depicting percent tree cover, a threshold value of 25% was adopted. This was used to compromise data calibrated for tropical forests and the values relevant for tropical dry forests while attempting to avoid inclusion of too many shrublands. The minimum percent tree canopy cover usually ranges between 10% and 30%. Different countries adopt different minimum percent thresholds. The difference in the threshold has led to discrepancies in forest area estimates especially in boreal forests and taiga, flooded grasslands and savannahs, and tropical and subtropical dry broadleaf forests. For countries that are mostly arid or semi-arid, such as Kenya, adopting a 10% threshold would result in a 28.1% forest cover for the country, but in humid tropical countries, such as Ecuador, adopting such threshold will result in more than 90% forest cover for the whole country. The lowest threshold used is in Iran, where forest is defined as an area with more than 1% tree canopy cover, while the highest are Malawi and Zimbabwe, where forest is defined as an area with more than 80% tree canopy cover. The tree canopy threshold used by Hansen et al (2013) was 30%.

Figure A.2. Flow chart of the method used to create the forest maps of 2018 and 2000.
Estimating global forest cover loss

The analysis to estimate forest cover loss for the period 2000 to 2017 was divided into two steps: the first to map deforestation from 2000-2015, and the second to update the map until 2018. The rationale for selecting 2015 is merely because most datasets are available for the period from 2000 to 2015. The final product obtained is presented in Map A.1.

Forest cover loss between 2000 and 2015

Forest cover data comprises two types of data: 1) purposely built deforestation data, and 2) time series of land cover maps where the mapped class was the change from forest to non-forest, which is defined as forest cover loss in this study. The purposely built tree cover loss data was produced by Global Forest Change (GFC) and deforestation data from Terra-i datasets. These two are considered more accurate assessments than data derived from forest map comparisons. The time series of land cover maps includes the MODIS IGBP, JAXA ALOS Forest/Non-Forest, and ESA CCI. The JAXA ALOS Forest/Non-Forest data was used only in the non-boreal region (areas that are south of 50 degrees north), where the backscatter effect of snow is minimal and the data performs the best. The definition of forest was the same as the one adopted by the used datasets. Table A.1 provides the links to the definition of forest used in the forest/non-forest maps. Land cover datasets are used in this study, as opposed to the FAO, which incorporates land use information in its definition of forest.

Any pixel mapped as showing changes from forest to non-forest or forest loss between 2000 and 2015 received a score of 1 for all datasets. A total score map was created with the tally of all data for each location (Maps A.2 and A.3). A binary map of deforested areas was created by selecting pixels mapped as transitioning from forest to non-forest or as deforested (depending on the source data) by more than two datasets. In other words, pixels with a tally score \(\geq 2 \) were selected. As shown in the maps, most of the deforested area only has one dataset agreed. Since our estimate of the deforested area is based on areas where at least two remote-sensing datasets agreed on deforestation, and some of those datasets include implicit definition of land use, that leads to an estimate of deforested area lower than any of the estimates using only one dataset. Moreover, the spatial resolution of our estimate is at 250m (6.25ha), thus forest cover losses less than 3.1ha within a 250m pixel are not included.

Table A.1. Datasets used to calculate the total forest loss areas from 2000 to 2017

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Area</th>
<th>Spatial resolution</th>
<th>Period</th>
<th>Temporal resolution</th>
<th>Source</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAXA ALOS F/NF</td>
<td>non-boreal</td>
<td>25m</td>
<td>2007-2017</td>
<td>6 years</td>
<td>Shimada et al. (2014)</td>
<td>Free of backscattering effect of snow</td>
</tr>
<tr>
<td>ESA CCI Land Cover</td>
<td>Global</td>
<td>300m</td>
<td>1992-2015</td>
<td>Annual</td>
<td>European Space Agency</td>
<td>Global land cover map with good accuracy. Land covers classified with “tree cover” were considered as “forest”</td>
</tr>
<tr>
<td>MODIS IGBP</td>
<td>Global</td>
<td>500m</td>
<td>2000-2015</td>
<td>Annual</td>
<td>Sulla-Menashe and Friedl</td>
<td>Global land cover map with good accuracy. Land cover classes with more than 30% tree cover were classified as “forest”</td>
</tr>
<tr>
<td>Global Forest Change</td>
<td>Global</td>
<td>30m</td>
<td>2000-2018</td>
<td>Annual</td>
<td>Hansen et al. (2013)</td>
<td>Landsat wall-to-wall annual maps of forest loss. Maps that indicate areas of tree cover loss were considered as “deforested”.</td>
</tr>
</tbody>
</table>
The calculation for the binary deforestation map for Africa was different. Instead of using a majority rule, since the GFC is the main dataset estimating deforestation in Africa, deforestation pixels were selected where GFC data indicates a forest loss or other pixels where at least two other datasets agreed. In the African case, therefore, the forest loss pixels indicated by GFC were given larger weight over the other datasets. The forest loss was drastically underestimated in Africa by most of the datasets, except for the GFC forest loss data. GFC is the only dataset that did not show any underestimation of deforestation in Africa likely because the GFC conducted calibration and validation in all the biomes, including those in Africa[29].

Map A.2 The number of remote sensing datasets that agreed where deforestation occurred between 2000 and 2015.

Map A.3 The number of remote sensing datasets that indicate deforestation area at 250m resolution between 2000 and 2015, in southeastern Australia (a); part of southeastern Asia (b); northeastern Brazil (c); and Russia-Mongolia region (d). These zoom-in figures show that a lot of deforested areas had no agreement for more than one dataset. The deforested areas in Mongolia, according to the local experts, were mostly due to fire and the lands are not converted to other land uses.
Forest cover loss from 2015 to 2017

While there were five datasets available to determine deforestation from 2000 to 2015, only three datasets were available from 2015 to 2017, namely JAXA ALOS, GFC and Terra-I (see Table A.1). As for the deforested area estimate for 2000-2015, areas where at least two datasets agreed deforestation occurred were included in the binary deforestation area map. The total deforested area from 2000 to 2017 is, therefore, the combined deforested areas between these two periods (Map A.4).

ALOS PALSAR data: ALOS PALSAR Forest/Non-forest maps produced by JAXA[33] were available for 2007-2010, and 2015-2017. Given discrepancies in Forest/Non-Forest classification among the ALOS-PALSAR maps time series for some locations, a decision tree permutation (see Table A.2) was used to determine the forest/non-forest class as the results of forest loss between 2015 and 2017.

Estimating forest maps for years 2000, 2015 and 2018

Forest map, year 2015

The largest number of either forest or land cover datasets is available for 2015. Four datasets were used to elaborate a 2015 forest map. Areas where at least three of the datasets used agreed in forest classification (Table A.3) were included. The data considered included:

- 2015 MODIS MOD44B Version 6 Vegetation Continuous Field (VCF) dataset[255]: A threshold at canopy cover of at least 25% was used to produce a binary map.
- Since the ALOS data was not used in the boreal region, to classify the forest cover in that region, areas with at least two datasets agreed as forest were selected.

<table>
<thead>
<tr>
<th>ALOS Based Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>NF</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>NF</td>
</tr>
<tr>
<td>NF</td>
</tr>
<tr>
<td>NF</td>
</tr>
</tbody>
</table>

Table A.2 Determining the forest (F) or non-forest (NF) class after year 2017 based on the forest/non-forest classification maps between 2015 and 2017 of ALOS.
Estimating forest maps for years 2000, 2015 and 2018

Table A.3. Datasets used in the analysis to estimate forest cover in 2015

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Area</th>
<th>Resolution</th>
<th>Period</th>
<th>Source</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA CCI Land</td>
<td>Global</td>
<td>300m</td>
<td>2015</td>
<td>European Space Agency (2019)[34]</td>
<td>Global land cover map with good accuracy. Land covers classified with “tree cover” were considered as “forest”.</td>
</tr>
<tr>
<td>MODIS VCF</td>
<td>Global</td>
<td>250m</td>
<td>2015</td>
<td>DiMiceli et al (2017)[255]</td>
<td>Wall-to-wall coverage of global percentage tree cover. Pixels with more than or equal to 25% tree cover were classified as “forest”.</td>
</tr>
<tr>
<td>MODIS IGBP</td>
<td>Global</td>
<td>500m</td>
<td>2015</td>
<td>Sulla-Menashe and Friedl (2018)[254]</td>
<td>Global land cover map with good accuracy. Land cover classes with more than 30% tree cover were classified as “forest”</td>
</tr>
</tbody>
</table>

Forest map, year 2018

The present (2018) forest cover map was produced by updating the 2015 map. This was done by subtracting the deforestation data produced for the 2015-2017 period. The total deforested areas from 2000 to 2017 were masked out from the present (2018) forest map. Figure A.3 illustrates the flow chart followed:

Figure A.3. Methods and datasets used to calculate the present (2018) forest cover map

Forest map, year 2000

The global forest map of the year 2000 was obtained by adding the total deforested area from 2001 to 2017 and the global present forest map. Mapping deforestation is different from producing a forest cover map. A key aspect to highlight is the fact the 2001-2015 forest cover loss analysis is the cornerstone of all the datasets. As explained above, the main reason for this is because this is a forest cover loss/deforestation analysis and not a forest cover analysis. The availability of datasets for more recent years increases the certainty of our forest lost estimates, and the present forest cover map.
APPENDIX 3: METHOD TO DETERMINE FOREST FRAGMENTATION

Fragmentation is assessed on a binary forest/non-forest map using MSPA (Morphological Spatial Pattern Analysis) based on Vogt et al. (2007)\(^{[25]}\). This produces a four-class map with varying levels of degradation, as described in Shapiro et al. (2016)\(^{[4]}\). The fragmentation class map is created for a forest map according to the following categories, using an edge width of 300m (Table A.4):

Table A.4. Fragmentation classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Level of Degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Forest</td>
<td>Interior forest pixels surrounded by forest</td>
<td>Low</td>
</tr>
<tr>
<td>Inner Edge</td>
<td>Forest unit on edge of interior non-forest (opening)</td>
<td></td>
</tr>
<tr>
<td>Outer Edge</td>
<td>Forest units bordering large non-forest areas</td>
<td></td>
</tr>
<tr>
<td>Fragment</td>
<td>Forest units too small to contain core forest</td>
<td>High</td>
</tr>
</tbody>
</table>

Map A.5 shows the fragmentation map using the classes defined in Table A.4.

Map A.5 Current forest fragmentation circa 2018 considering core forests, inner edges, outer edges and fragments.
We define degradation via a reduction of above-ground biomass at forest edges through a process of fragmentation. We mapped fragmentation classes for both all-evidence forest cover maps from 2000 and 2018 (see Appendix 2), and determine which classes stay the same or transition to a different class. The transitions are reclassified into their defined trajectories as shown below. All processes were performed in Google Earth Engine.

The resulting map is classified according to its stable state if it does not change (i.e. core, inner edge, outer edge or patch) or a trajectory (primary or secondary deforestation or degradation) if the fragmentation class has changed between years (see Map A.6). This allows us to assess primary and secondary deforestation and degradation, as well as intact core forest, or stable edge categories worldwide.

Map A.6 Present forest and total deforestation (primary and secondary) and degradation (primary and secondary). Based on all-available data estimates. The categories build on Shapiro et al (2016).[41].
Mountain gorillas at Virunga National Park, Democratic Republic of Congo.
© Martin Harvey / WWF

A CLOSER LOOK AT THE DEFORESTATION FRONTS

This section includes key information about the 24 deforestation fronts including: main facts on location, type of forests, and deforestation trends, main proximate (direct) and underlying (indirect) drivers of deforestation, responses put in place, main outcomes achieved by those responses, and recommended future actions to address deforestation and forest degradation.
Contents
DF 1: Brazilian Amazon 78
DF 2: Colombian Amazon 80
DF 3: Peruvian Amazon 82
DF 4: Bolivian lowlands 84
DF 5: Venezuela and Guyana 86
DF 6: Gran Chaco 88
DF 7: Brazilian Cerrado 90
DF 8: Chocó-Darién 92
DF 9: The Maya forest 94
DF 10: Liberia/Ivory Coast/Ghana 96
DF 11: Cameroon 98
DF 12: Gabon/Cameroon/Republic of Congo 100
DF 13: Democratic Republic of the Congo and Central African Republic 102
DF 14: Angola 104
DF 15: Zambia 106
DF 16: Mozambique 108
DF 17: Madagascar 110
DF 18: Cambodia 112
DF 19: Laos 114
DF 20: Myanmar 116
DF 21: Sumatra 118
DF 22: Borneo 120
DF 23: Papua Indonesia and Papua New Guinea 122
DF 24: Eastern Australia 124
DEFORESTATION FRONT

BRAZILIAN AMAZON

The Brazilian Amazon is one of the largest areas of tropical forests at 395 million ha\(^2\), and provides significant environmental services, including carbon sequestration and some of the world’s richest biodiversity\(^2\). The southern and eastern portions of the Amazon have faced high pressures in the last four decades. The biome is close to reaching a tipping point, at which the forest will no longer be able to sustain processes such as water recycling, that keep it alive\(^2\), and the most affected portions will suffer diminished rainfall and prolonged dry seasons\(^3\).

Drivers of deforestation

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle ranching</td>
<td>Expanding predominantly under extensive and low-production systems, in some cases linked to land speculation that leads to establishment of pasture to justify land ownership(^1), (^4).</td>
</tr>
<tr>
<td>Roads expansion</td>
<td>Mainly through the paving of main transport corridors(^5). Also, the growing network of unofficial roads(^6) facilitates logging operations followed by active land occupation(^9).</td>
</tr>
<tr>
<td>Large-scale agriculture</td>
<td>Commercial agricultural crops tend to expand by taking over pasture lands, but may contribute to deforestation through displacement of ranching for beef production(^1), (^7).</td>
</tr>
<tr>
<td>Smallholder farming</td>
<td>Linked to the expansion of subsistence and cash crops (e.g. cocoa), and combined with the adoption of cattle ranching in smallholder systems, including agrarian reform settlements(^10).</td>
</tr>
<tr>
<td>Large-scale logging</td>
<td>While commercial logging has dropped over time, illegal activities have continued, linked to small-scale logging but also promoted by organized criminal networks(^11), (^12).</td>
</tr>
<tr>
<td>Mining operations</td>
<td>Large-scale mining has limited direct impacts on deforestation, but may generate waste and affect local livelihoods(^8). Illegal gold mining also threatens indigenous lands(^13).</td>
</tr>
<tr>
<td>Hydroelectric power</td>
<td>Hydroelectric dams play a significant role in deforestation, not just from the area flooded but by the settlement that they attract – a recent example is the Belo Monte Dam(^15). The Bolsonaro administration has signalled its intention to expand dams in the Amazon basin.</td>
</tr>
<tr>
<td>Fires</td>
<td>Used for clearing primary forests and preparing the area for agriculture(^16), though fires occur also on already cleared land(^9) and can get out of control, invading standing forests(^17).</td>
</tr>
</tbody>
</table>

Underlying causes

Underlying causes are insecure tenure and land speculation that is also associated with land grabbing or encroachment of public lands, protected areas and indigenous lands\(^18\). In addition, large-scale investments in infrastructure and hydroelectrical dams and expansion of logistics for supporting agribusiness development have also prompted land occupation and growing pressure on forestlands\(^9\). More recently, relaxed environmental controls\(^2\), \(^3\) and the national government’s support of agribusiness and extractive industries in the Amazon have countered previous governments’ perspectives on forest conservation in the Amazon\(^2\), suggesting that it is no longer a federal government priority.

Responses

Protected areas	Active establishment of a mosaic of protected areas and conservation units (103M ha) intended to protect biodiversity and contain the agricultural frontier expansion\(^1\), \(^2\).
Recognition of IPLCs	Extended recognition of indigenous territories and other traditional tenure rights (115M ha)\(^3\), constituting an important strategy to support local livelihoods and protect forests.
Moratoria	Soy Moratorium (2008) to halt the expansion of soy into forestlands\(^19\), and a cattle agreement (2009) to avoid sourcing beef from deforestation-risk areas\(^20\), along with an independent system of deforestation alerts (SAO)\(^21\).
Land-use zoning	Land-use regulations – including a rural environmental registry and reform of the Forest Code – and credit constraints to halt conversion and restore legal forest reserves\(^22\).
Deforestation monitoring	Brazil has developed one of the most reliable systems for monitoring deforestation in the Amazon (INPE)\(^23\), growing investments in enforcement and monitoring of illegal forest clearing\(^24\), \(^25\), but some loopholes in the system still allow for the laundering of illegal timber\(^26\). More recently, there has been a significant weakening of enforcement operations.
Timber legality	Growing investments in enforcement and monitoring of illegal forest clearing\(^24\), \(^25\), but some loopholes in the system still allow for the laundering of illegal timber\(^26\). More recently, there has been a significant weakening of enforcement operations.
REDD+ projects	Several REDD+ projects were established in the Amazon. The Amazon Fund (2008) was created to finance conservation, monitoring and sustainable use projects\(^27\).
Traceability of supply	Main soy traders are tracing their sources of supply to comply with the Soy Moratorium, as are meat-packing groups, but some loopholes persist\(^28\).

Future trends

- **Deforestation trend**: Downward trends from 2004 to 2012; upward trends since 2013 but still at a relatively lower rate\(^4\) compared to early 2000s.
- **Increase in deforestation during 2018 and 2019 suggests that deforestation in the Amazon will follow an upward trend.**

Countries, region | Brazil, Amazon
Forest type | Humid tropical forests
Total area | 118.7Mha
Forest area in 2018 | 85.9Mha (72.3% of total deforestation front area)
Forest loss 2004-2017 | 15.5Mha (15.4% of forest area in 2000)
Location of deforestation | Mainly in the south and east\(^4\)
Total forest core area in 2018 | 49.8Mha (58.0% of forest area in 2018)
Fragmented forests 2000-2018 | 11.4Mha (11.4% of forest area in 2000)
Accumulated burned area, 2002-2019 | 14.2Mha (14.1% of forest area in 2000)
Deposition of deforestation | 2018 and 2019 suggests that deforestation in the Amazon will follow an upward trend.
Main outcomes

The establishment of protected areas and recognition of indigenous rights have proven effective in containing deforestation, securing carbon stocks and protecting biodiversity[20]. The Soy Moratorium has helped halt the expansion of soy in the Amazon biome[21], yet the cattle agreement has been unable to control indirect suppliers and “cattle laundering” has become a widely adopted practice[22]. Persisting deforestation has been associated with land speculation and encroachment of public lands[23]. In the recent past, a gradual weakening of law enforcement has stimulated a growth of illegal activities.

Recommended future actions

- Eliminate land grabbing and land speculation.
- Reduce deforestation on private properties by facilitating payments for environmental services (PES) combined with market initiatives for sustainable sourcing.
- Incentivize increased productivity through targeted investments.
- Provide technical assistance to enhance smallholders’ performance[24].

References

DEFORESTATION FRONT

COLOMBIAN AMAZON

The Colombian Amazon comprises about two-thirds of the forests in Colombia, containing important biodiversity and water resources. Main pressures to the region originate from colonization programmes established in the Andes-Amazon foothills (piedemonte), which expanded along the Caquetá, Putumayo, Cagüán and Orteguaza rivers and main roads that opened over time. Spontaneous occupation by smallholders followed, triggered by opportunities for timber extraction and land for farming, including coca cultivation. Cattle ranching associated with a speculative process of land occupation has also contributed to active frontier expansion and deforestation. In addition, armed conflict has been a key influence on land-use occupation and decision-making in Colombia.

Drivers of deforestation

- **Cattle ranching**: Cattle herds of about 5 million heads (18% of the total cattle herd in the country) are located in the Amazon region, with a higher concentration in Meta and Guaviare. Cattle ranching expands through low-production extensive systems associated with land speculation and concentration.
- **Smallholder farming**: Mainly linked to the expansion of coca cultivation, which increased from the mid-2010s but shrank in 2018. About 27% of coca production is located in the arc of deforestation (Meta, Guaviare, Caquetá and Putumayo). New areas tend to be established in small patches non-contiguous with previously cleared areas.
- **Road expansion**: Deforestation used to occur mainly along rivers, but more recently about 76% of deforestation took place in areas closer to roads, more recently about 76% of deforestation took place in areas closer to roads. More recent deforestation was associated with the expansion of the “Marginal de la Selva” road that connects the deforestation expansion areas of southern Meta and northwestern Guaviare.
- **Timber extraction**: Timber extraction places pressures on forests, following the opening of local roads. There are no consistent estimates about the magnitude of timber extraction in the Amazon, particularly informal extraction, but it may be increasing as frontiers expand.
- **Mining operations**: Linked to mainly alluvial gold mining that attracts people from outside and within the region, in particular along the Caquetá, Orteguaza and Vaupés rivers. Gold mining tends to oscillate depending on the market dynamics, and has decreased since 2017.

Signs:

- Primary cause of forest loss and/or severe degradation
- Secondary cause of forest loss and/or severe degradation
- Less important cause of forest loss and/or severe degradation

Underlying causes

Global demand for commodities produced in the region, such as gold and coca, tends to stimulate production, as does domestic demand for beef and investments in the expansion of secondary roads. These factors are accompanied by the expansion of informal and illicit economies, and the lack of more aggressive policies and budgets to support environmental protection and contain deforestation.

The armed conflict had different impacts on forests in different places, depending on local conditions – deforestation in conflict zones increased after the 2016 peace process.

Responses

- **Protected areas**: There are 18 protected areas in the Colombian Amazon comprising 9.4Mha, and no major pressure was observed in these protected areas, which are still distant from the frontier areas. The “Heritage Colombia” programme has been established to support the management of protected areas.
- **Recognition of IPLCs**: Some 206 indigenous reserves (resguardos indígenas) were recognized in the Amazon over 26Mha. Only 9.3% of total deforestation took place within indigenous lands in 2018.
- **Land-use zoning**: A law for territorial zoning was issued in 2011, which included a goal to zone the forestry reserves in the Amazon region, and specified the competences of different levels of government, granting more responsibilities to subnational governments.
- **Payments for ecosystem services**: Payment for ecosystem services (PES) mechanisms, including the Forestry Incentive (Certificado de Incentivo Forestal), issued in 1994, originally targeted reforestation actions but has also embraced conservation targets since 1997.
- **REDD+ projects**: Under the REDD+ programme, the government formulated a strategy to control deforestation and support forest management (EICDBG), US$366 million was secured from donors (Norway, Germany, UK) to reduce deforestation to 150,000 ha by 2022 and less than 100,000 by 2025. These resources will be managed by the recently set up “Sustainable Fund”.
- **Timber legality**: There is a long-standing pact aimed at legal timber in Colombia (PIML), and since 2007 the government of Colombia has negotiated the implementation of FLEGT with the EU.
- **Deforestation monitoring**: A system to monitor forest cover and carbon (SMBC) under the Institute of Hydrology, Meteorology and Environmental Studies includes remote sensing data analysis, and developing community participatory processes.
- **Conservation agreements**: As part of the EICDBG, several supply chain-based zero-deforestation agreements and conservation agreements with communities are planned. Conservation agreements with farmers and communities in the Caquetá and Guaviare are being implemented.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle ranching</td>
<td>Cattle herds of about 5 million heads (18% of the total cattle herd in the country) are located in the Amazon region, with a higher concentration in Meta and Guaviare. Cattle ranching expands through low-production extensive systems associated with land speculation and concentration.</td>
</tr>
<tr>
<td>Smallholder farming</td>
<td>Mainly linked to the expansion of coca cultivation, which increased from the mid-2010s but shrank in 2018. About 27% of coca production is located in the arc of deforestation (Meta, Guaviare, Caquetá and Putumayo). New areas tend to be established in small patches non-contiguous with previously cleared areas.</td>
</tr>
<tr>
<td>Road expansion</td>
<td>Deforestation used to occur mainly along rivers, but more recently about 76% of deforestation took place in areas closer to roads. More recent deforestation was associated with the expansion of the “Marginal de la Selva” road that connects the deforestation expansion areas of southern Meta and northwestern Guaviare.</td>
</tr>
<tr>
<td>Timber extraction</td>
<td>Timber extraction places pressures on forests, following the opening of local roads. There are no consistent estimates about the magnitude of timber extraction in the Amazon, particularly informal extraction, but it may be increasing as frontiers expand.</td>
</tr>
<tr>
<td>Mining operations</td>
<td>Linked to mainly alluvial gold mining that attracts people from outside and within the region, in particular along the Caquetá, Orteguaza and Vaupés rivers. Gold mining tends to oscillate depending on the market dynamics, and has decreased since 2017.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Facts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries, region</td>
<td>Colombia, Amazon</td>
</tr>
<tr>
<td>Forest type</td>
<td>Humid tropical forests</td>
</tr>
<tr>
<td>Total area</td>
<td>8.2Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>5.8Mha (70.4% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.4Mha (6.8% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Deforestation has moved from Putumayo to the southern portion of Meta, along the “deforestation arc”, comprising also Caquetá and Guaviare.</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>3.3Mha (57.8% of forests in 2018)</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>0.5Mha (8.6% of forest area in 2000)</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>0.8Mha (12.4% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Increasing mainly in the two last years, according to national sources.</td>
</tr>
<tr>
<td>Future trends</td>
<td>Deforestation may continue at current rates</td>
</tr>
</tbody>
</table>
Main outcomes

The government has embraced different responses to halt deforestation targeting not only the Amazon but also other regions. The most important is the EIDCGB strategy to control deforestation and support forest management. This has attracted some external finance under a results-based mechanism to avoid carbon emissions, and has led to the establishment of a fund to support actions on the ground along with conservation agreements in value chains. However, several challenges must be addressed to prove the effectiveness of this strategy: these include the outcomes from the peace agreements on deforestation\cite{14, 22}, vigorous informal and illegal activities linked to the establishment of a fund to support actions on the ground along with conservation agreements in value chains. However, several challenges must be addressed to prove the effectiveness of this strategy: these include the outcomes from the peace agreements on deforestation\cite{14, 22}, vigorous informal and illegal activities, and has led to the establishment of a fund to support actions on the ground along with conservation agreements in value chains. However, several challenges must be addressed to prove the effectiveness of this strategy: these include the outcomes from the peace agreements on deforestation\cite{14, 22}, vigorous informal and illegal economies, pasture expansion triggered by speculative land concentration\cite{23} and policy signals favouring agricultural development.

References

1. IDEAM. 2019. Resultados monitoreo de la deforestación 2018. Available from: pidamazonia.com/content/resultados-monitoreo-de-la-deforestacion-2018
Drivers of deforestation

- **Smallholder farming**: Associated with the growth of small-scale coffee and cacao plantations, along with coca cultivation which are expanding northwards. In Ucayali, some indigenous lands have been encroached on by smallholder colonists from traditional coca production zones.
- **Cattle ranching**: The Ucayali/Huanuco region in the central Peruvian Amazon has faced pressure from cattle ranching. Much of this expansion takes place outside areas defined for agricultural use.
- **Mining operations**: Small-scale illegal gold mining in rivers and floodplains in Madre de Dios attracts people to forest zones, places pressure on protected areas and leads to deforestation. It also contributes to mercury contamination from terrestrial to aquatic environments.
- **Commercial logging**: About eight major market circuits supply timber to the main urban markets in Peru. Around two-thirds of the total comes from informal sources, involving a significant number of smallholders, small-scale chainsaw operators and intermediaries.
- **Large-scale agriculture**: In Ucayali and Loreto/San Martin, a handful of projects for expanding large-scale oil palm plantations placed pressure on indigenous communities lacking tenure rights and took advantage of informal land markets. Other projects did not materialize as expected.
- **Roads expansion**: The opening and expansion of local and secondary roads, often associated with illegal logging operations, indirectly contributes to livestock activity and smallholders expansion. Project road expansion (e.g., a road in the buffer zones of Manu National Park and Amarákáre Communal Reserve) is expected to produce uncontrolled colonization and deforestation.

Responses

- **Protected areas**: About 20Mha have been designated as protected areas, a significant proportion covering forestlands. A new initiative, “National Parks: Peru’s Natural Legacy”, was signed in 2019 involving the national government and donors to mobilize financial support for managing these protected areas.
- **Recognition of IPLCs**: Recognition of indigenous tenure rights has increased over time. By 2016, 12Mha were titled, and 5.8Mha were pending. In addition, 2.8Mha were set aside as reserves to protect semi-nomadic groups and another 2.2Mha as communal reserves comprising various communities.
- **Land-use zoning**: Subnational governments hold decision-making power over natural resources through a law on territorial planning. Several regions have finalized their ecological zoning plans including Ucayali and San Martin (the latter has also approved the zoning of forest reserves).
- **Timber legality**: Organismo de Supervisión de los Recursos Forestales y de Fauna Silvestre (OSINFOR) is the state agency in charge of monitoring and controlling timber extraction in the Peruvian Amazon, while Servicio Nacional Forestal y de Fauna Silvestre (SERFOR) is in charge of granting permits. However, the limited mandate of OSINFOR, and the lack of support of regional governments, makes this a difficult task.
- **REDD+ projects**: Peru participated in REDD+ readiness initiatives (CPF, UN-REDD) and received funds from several donors, including US$550M from the Forest Investment Program. Norway pledged US$300M for REDD+ performance-based payments in 2014.[19]
- **Voluntary standards**: About 7.4Mha in the Peruvian Amazon were allocated to forest concessions but a portion of those concessions is inactive. Only 0.7Mha are under FSC certification.
- **Payments for ecosystem services**: The Programa Bosques, created in 2010 and implemented by the Ministry of Environment (MINAM), aims to conserve 54Mha by compensating indigenous communities with titles (around US$3.20 per ha/year), and includes capacity building, monitoring and financial reporting.
- **Sustainable landscape finance**: A project on “unlocking forest finance” was implemented to promote sustainable supply in San Martin, supported by the International Climate Initiative (IKI) (2013-18), in agreement with the Regional Environmental Authority, and Agrobanco to develop a green agricultural credit line.

Underlying causes

Underlying causes are mainly linked to a process of land occupation that has been triggered by the expansion of relatively large informal economies. These are connected to speculative land markets, as well as illegal logging, small-scale gold mining and illicit coca cultivation. Local regional elites have also stimulated extractive and industrial expansion in the Peruvian Amazon. The government, however, has issued legislation to address illegal activities and support forest conservation, and there are several initiatives to support alternative economic activities for local communities.
Main outcomes

Protected areas have proven effective in halting deforestation but there is pressure from illegal logging. Forest concessions also face that pressure, and no significant differences in deforestation rates have been observed between certified and non-certified concessions[24]. Regional governments have not always been able to put in place the mechanisms to enforce their land use plans[35]. While active financial and institutional support has been deployed under REDD+ readiness programmes, Measurement, Reporting and Verification (MRV) has been only partially adopted[40]. The current government administration is investing additional efforts to alleviate the negative effects of gold mining[50].

Recommended future actions

- Advance recognition of tenure rights in forest areas, and support formalization of smallholders’ tenure rights supporting them to improve their farming systems and develop alternative livelihoods.
- Improve national and sub-national monitoring systems and financial and technical means to improve farmers’ compliance with land-use plans.
- Provide the institutional conditions for small-scale and informal chainsaw loggers to undertake sustainable forest management.
- Continue efforts to formalize and regulate illegal gold mining.

References

BOLIVIAN LOWLANDS

The Bolivian lowlands comprise a diverse mosaic of tenure systems, land uses and actors. These range from indigenous people and local communities (IPLCs) to agribusiness and traditional cattle ranchers, along with smallholders increasingly engaged in commercial agriculture. The expansion of agriculture and cattle ranching in frontier areas, also promoted by government policies, is placing increasing pressures on forests.

Drivers of deforestation

Cattle ranching	A large portion of deforestation has been driven by mid- to large-scale extensive cattle ranching in the deciduous forests of the Chiquitania region, often taking over public lands[3].
Smallholder farming	Expansion of smallholder farming producing commercial crops, linked to a governmental process of land allocation to smallholders or occupation of public forestlands and forest reserves stimulated by a legal and regulatory framework that is more supportive of small-scale deforestation[4].
Large-scale agriculture	Large-scale agriculture for grain production (e.g. soy, sunflower, rice) has been a major driver of deforestation in the new frontier areas in northwestern and southern Santa Cruz[1, 2]. Part of this expansion is triggered by the expansion of Mennonite settlements in the new fronts.
Road expansion	Public investments in transport corridors in northern La Paz, northeastern Santa Cruz and southern Beni, and transboundary highways have facilitated land occupation[1].
Fires	There is a long-lasting occurrence of fires in lowland Bolivia, yet fire outbreaks in 2019 were more severe, with more than a third (2Mha) affecting forestlands[5]. Fires, however, lead more to forest degradation and were associated with forest conversion.
Commercial logging	Logging has persisted, particularly in the forest fringes in northern La Paz and Pando, leading to further degradation of primary forests[6]. Timber extraction has shrunk dramatically as a result of growing imports of cheaper wood products.

Underlying causes

Primarily associated with “neo-extractivist” government policies[7]. The national government has encouraged agricultural expansion for grain production and biofuels as a driver for economic growth, and the expansion of smallholders into non-occupied public forestlands[8] due to migration from the western to the eastern part of the country. In addition, growing investments in infrastructure and road construction, due to growing fiscal earnings originating from gas exports as well as government borrowing, have also stimulated occupation of lowland forests. The government has approved several regulations prompting deforestation, such as Law 337 of Support to Food Production and Forest Restitution (2013), Law 741 authorizing forest clearing for smallholders up to 20ha (2015) and Law 1090 promoting production of biofuel (2019). These laws were complemented with other regulations relaxing environmental constraints on land use.

Responses

Protected areas	About 21Mha have been designated as protected areas, a significant proportion covering forestlands[9], yet oil and gas exploration activities have been allowed in some protected areas[10]. Some expansion of protected areas has taken place in recent years at the departmental and municipal level.
Recognition of IPLCs	About 19Mha have been granted to IPLCs, 5Mha of which are inside protected areas[11]. These areas have different degrees of protection[12].
Land-use zoning	All departments in the lowlands (i.e. Santa Cruz, Beni, Pando) have land-use zoning plans, yet there is a lack of economic incentives and enforcement to ensure compliance[11]. The departmental government in Beni has revised land-use plans removing constraints for agriculture expansion, and the forestry agency has relaxed some of the land-use regulations.
Voluntary standards	A large portion of forest concessions were certified under FSC[13]. No progress has been made in the adoption of sustainable practices on large-scale farms, with some few exceptions[14].
Timber legality	The government has developed a national system of monitoring and verification of timber legality, but it has been accompanied by a discretionary policy of granting forest permits[15]. Lack of enforcement by government entities, corruption and traffic of permits are widespread.

Future trends

- Deforestation to continue expanding
Main outcomes

A system of protected areas accompanied by land-use plans at the departmental level and the recognition of tenure rights for indigenous people have helped contain the expansion of the agricultural frontier[12-14]. However, pressures from new smallholder settlements, road infrastructure and growing connection to markets continue to drive deforestation and forest degradation[15,16]. Despite its conservationist rhetoric of “living in harmony with Mother Earth”, the government has stimulated quite aggressively agribusiness and biofuel production as well as the expansion of human settlements, while the lack of control of genetically modified crops has allowed grain production to expand into new areas[17,18]. This has been in part reflected in the fire outbreaks in the Chiquitania during the 2019 fire season[19].

Recommended future actions

- Revise the process of forestland allocation in the lowlands, particularly in areas identified as public forestlands, and develop actions to contain encroachment into protected areas and forest reserves.
- Account for the environmental impacts of new investments in infrastructure development, including roads and hydroelectric dams.
- Intensify agricultural activities in already occupied lands and restore productivity, along with promoting habitat corridors in frontier areas.
- Provide compensation for local communities to protect their forests while building alternative livelihoods in areas that still maintain an important amount of primary forests.
- Reverse the erosion of the national system of protected areas and provide more financial and human resources.
- Support capacities of indigenous people to manage their territories.

References

deforestation scenarios for the Bolivian lowlands. CIFOR, Bogor, Indonesia.
14. Jacob, J. and Lance, A. 2018. “When we stand up, they have to negotiate with us”: Power relations in and between an agroindustrial and an Indigenous food system in Bolivia.” Sustainability 10(11): 4001.
The region still holds large forest areas; about 60% of Venezuela is covered by natural forest, and 90% of Guyana is forested\(^1\); 84% of the whole deforestation front is covered by natural forests. Deforestation is lower compared to other fronts, and main pressures originate from mining and smallholder farming. Guyana has been active in adopting measures in the context of REDD+ to protect its forests and as such has maintained low annualized deforestation rate, averaging 0.053% since 2018\(^2\).

Drivers of deforestation

<table>
<thead>
<tr>
<th>Drivers of deforestation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>Deforestation related to gold mining has been an increasing driver of deforestation in both Venezuela and Guyana, especially around 2012(^3,4). In Guyana, mining is estimated to account for up to 84% of deforestation(^5). Infrastructure and road-building related to mining are also important(^6).</td>
</tr>
<tr>
<td>Smallholder farming</td>
<td>Small-scale shifting agriculture has been a persistent and large driver of deforestation in Venezuela, responsible for the majority of deforestation every year from 2001 to 2015. In Guyana, small-scale agriculture is also a primary driver of deforestation(^7).</td>
</tr>
<tr>
<td>Large-scale agriculture</td>
<td>Large-scale commodity crop agriculture has been a persistent but minor driver of deforestation, responsible for approximately a quarter of deforestation in Venezuela from 2001 to 2015(^8), and a far smaller proportion in Guyana(^9).</td>
</tr>
<tr>
<td>Cattle ranching</td>
<td>Small-scale shifting agriculture in Venezuela is often accompanied by some livestock activities and thus is paired with agriculture as a driver of deforestation(^10).</td>
</tr>
<tr>
<td>Commercial Logging</td>
<td>Forestry is a consistent but very minor driver of deforestation in Venezuela, responsible for just a small percentage of overall deforestation in recent years(^11).</td>
</tr>
</tbody>
</table>

Underlying causes

In Guyana, market forces, such as increasing gold prices followed by the expansion of other markets in the country, are likely responsible for the rise and subsequent recent decrease in deforestation.

Responses

<table>
<thead>
<tr>
<th>Responses</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deforestation monitoring</td>
<td>As part of its REDD+ efforts, Guyana has developed and instituted an intensive, nationwide forest monitoring system(^12).</td>
</tr>
<tr>
<td>REDD+</td>
<td>Guyana has been an early and active REDD+ participant, including through a major agreement with Norway(^13).</td>
</tr>
<tr>
<td>Protected areas</td>
<td>Venezuela has a relatively large share of its land in protected areas, but in one study these protected areas were found to be not as effective in limiting deforestation as they have been in other countries(^14).</td>
</tr>
</tbody>
</table>

1. See text for sources and references.
2. See text for sources and references.
3. See text for sources and references.
4. See text for sources and references.
5. See text for sources and references.
6. See text for sources and references.
7. See text for sources and references.
8. See text for sources and references.
9. See text for sources and references.
10. See text for sources and references.
11. See text for sources and references.
12. See text for sources and references.
13. See text for sources and references.
14. See text for sources and references.
Main outcomes

The most prominent driver of deforestation, particularly in Guyana, continues to be mining, though mining activity has decreased in recent years[9]. Future trends are likely to depend on changes in the underlying market drivers that influence mining.

Recommended future actions

- Continue deforestation monitoring associated with REDD+, which has been significant as a response to deforestation, especially in Guyana.
- Ensure protected areas are managed effectively.
- Incorporate methodologies and technologies which allow for more real-time, predictive monitoring to address deforestation proactively and to support better land-use planning.
- Ensure expansion of protected areas to meet CBD target and continue to maintain so that protected areas are managed effectively.
- Ensure decisive action on the increasing deforestation from gold mining, which can have lasting negative impacts on Guyana’s REDD+ efforts.

References

The Gran Chaco has one of the highest rates of deforestation in the world, driven particularly by genetically modified soy production and large-scale cattle ranching. Most efforts to control the rate of loss have so far been unsuccessful, although deforestation rates are slowing in some areas.

Drivers of deforestation

Large-scale agriculture

Large- and medium-scale mechanized agriculture has been the most important driver of deforestation in the Chaco, particularly for soybean in Argentina, and a proportion of previously converted grazing lands are being switched to soy. Traditional small farms have been replaced by larger fields. These are considered future pressures in Paraguay.

Cattle ranching

Clearance of forest to create cattle pasture is the primary driver of deforestation in parts of the Chaco, particularly in Paraguay, and remains important in Argentina, mainly under extensive systems. The soy and cattle industries are increasingly closely interlinked in the region, including through transnational investments.

Smallholder farming

Indigenous people and traditional criollos farmers are being displaced by large-scale agriculture and cattle ranching and are moving into remaining forests, potentially adding further deforestation pressure. Much of the displacement took place through uneven competition in the land markets that works against local farmers and communities.

Charcoal production

Commercial charcoal production for export is significant, particularly in Paraguay, although it is mainly from areas that are being cleared for other purposes. Charcoal-making by smallholders causes mainly degradation in Argentina.

Small-scale timber extraction

Small-scale timber extraction for fuelwood is only a minor forest use and the number of users is declining, in part because deforestation means supplies are no longer available and different energy sources are being introduced.

Underlying causes

Agricultural demand is a major driver of deforestation, and it is also accompanied by land-use intensification. Regulation of deforestation in the region has been hampered by a number of factors, including the importance of the agricultural sector, relatively low carbon stocks compared with other forest areas and the prevalence of private land tenure. In addition, uneven land competition stimulated by government policies has led to the concentration of agricultural activities on a smaller number of large-scale farms in the Chaco, to the detriment of small-scale farmers who have tended to be marginalized.
Outcomes

Existing protected areas are important, but currently insufficient and their isolation is a serious problem[23]. PES schemes pay far less than could be earned through conversion to soy and are for a length of time of the farmer’s choosing so that lands of high potential value tend to stay in the scheme for less time[26]. Success is partly due to the strength of different sub-national governments[29]. In spite of existing and new forest regulations, the pressures on indigenous people’s land appear to have increased, with effects on deforestation[20]. The extent to which the forest law in Argentina has been successful in conserving forest is disputed: some analysts claim that it has reduced deforestation[29], while others highlight continued deforestation[24] even within protected areas[27], and say provincial governments are unable to enforce the law effectively.

Recommended future actions

- Urgently strengthen the protected area system, making it more representative, and conserve ecological corridors.
- Use consumer pressure to step up moratoria and use of certification for soy and beef, including pressure on companies deeply involved in the trade[31].

References

Protected areas

The region is currently under-represented by protected areas with poor representation of terrestrial vertebrates; in 2009 protected areas covered 9% of the Chaco[28] and isolation of protected areas is a serious problem[29].

Payment for ecosystem services

A payment for ecosystem services (PES) scheme in Argentina provides funding for farmers. WWF has promoted a PES scheme in Paraguay[24].

Voluntary standards

The Roundtable on Responsible Soy (RTRS) operates in the countries of the Chaco and is promoting production without further conversion of natural ecosystems.

Land-use zoning

Zoning policies apply in the Argentine Chaco to balance agriculture and conservation under the 2007 Forest Law, yet the environmental outcomes remain unclear[29].

Recognition of IPLCs

Granting indigenous land title in Argentina is still fairly limited. In Bolivia, 17 indigenous territories were formalized in favor of Guasac communities covering 1.9Mha, out of a total of 6.7Mha that were claimed[28].

Land tenure security

Only a few small-scale farmers are involved in land tenure claims in the Argentine Chaco; many do not have formal title and are in danger of being evicted. So far, land tenure policies have not substantially reduced forest loss[24].

Forest laws

A national “Forest Law” was passed in Argentina in 2007. In 2007, several regulations have been passed in recent years favouring expansion of the agricultural frontier[29].

Deployment at wider scale

Actively used and expanding Project-specific, experimental

Deployment at wider scale

Actively used and expanding Project-specific, experimental
BRAZILIAN CERRADO

The Brazilian Cerrado, which covers over 200Mha, is the world’s most biodiverse savannah. With more than 11,000 native plant species, as well as large sums of mammal, fish, bird, amphibian and reptile species, it is recognized as a global biodiversity hotspot[1–2]. The Cerrado plays an essential role in supporting Brazil’s water cycle as the source of eight of the country’s 12 river basins[3,4]. Pasture and large-scale agriculture have expanded rapidly across the region over the past four decades, rapidly transforming the Cerrado[5]. Ongoing clearing may reduce biodiversity hotspots[1,2]. The Cerrado plays an essential role in supporting Brazil’s mammal, fish, bird, amphibian and reptile species, it is recognized as a global biodiversity hotspot[1,2]. The Cerrado plays an essential role in supporting Brazil’s water cycle as the source of eight of the country’s 12 river basins[3,4]. Pasture and large-scale agriculture have expanded rapidly across the region over the past four decades, rapidly transforming the Cerrado[5]. Ongoing clearing may reduce biodiversity hotspots[1,2]. The Cerrado plays an essential role in supporting Brazil’s mammal, fish, bird, amphibian and reptile species, it is recognized as a global biodiversity hotspot[1,2]. The Cerrado plays an essential role in supporting Brazil’s water cycle as the source of eight of the country’s 12 river basins[3,4]. Pasture and large-scale agriculture have expanded rapidly across the region over the past four decades, rapidly transforming the Cerrado[5]. Ongoing clearing may reduce biodiversity hotspots[1,2].

Drivers of deforestation

<table>
<thead>
<tr>
<th>Cattle ranching</th>
<th>The majority of cleared areas become pasture, but stocking rates on most pastures are low[9]. Expansion of pasture is also connected with land speculation and future transition to soy and other high-priced crops.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale agriculture</td>
<td>Most soy produced in the Cerrado is used for animal feed, supplying both domestic and international markets[9]. Unlike in the cattle sector, productivity in the soy sector is generally high[9]. Cotton, maize, coffee and silviculture are other important crops.</td>
</tr>
<tr>
<td>Fires</td>
<td>Fire is traditionally used in the Cerrado as a land management strategy, putting farmers at odds with environmental agencies which seek to limit fires around protected areas[11].</td>
</tr>
<tr>
<td>Mining operations</td>
<td>Increasingly a risk as measures that expand the area available to mining and that reduce the requirements for environmental assessments of new mines make their way through Brazil’s legislative bodies[8,11].</td>
</tr>
<tr>
<td>Charcoal production</td>
<td>For use in the steel industry, which has large mills in Minas Gerais[9]. Previously solely produced from native vegetation, now wood from eucalyptus plantations is also used[9].</td>
</tr>
</tbody>
</table>

Underlying causes

Underlying causes include weak public protection for natural vegetation, especially compared to the Amazon. Only 7.5% of the Cerrado falls in public protected areas[12], and private landowners are only required to maintain 20-35% of their property under native vegetation under Brazil’s Forest Code. The proximity of the Cerrado to international markets, including Europe, and to large national markets along the country’s coast increases incentives to expand agriculture and ranching, and the importance of the region for production of steel and hydroelectric power. Land speculation is a significant additional cause of conversion, linked to the opportunity for a future transition to agriculture.

Key facts

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Brazil, Cerrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Dry forests, gallery forests, woody savannah, grasslands</td>
</tr>
<tr>
<td>Total area</td>
<td>71.7Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>5.6Mha of forests (7.8% of total deforestation front area) when looking only at forest estimates based on a global assessment; 46.9Mha (65.0% of total deforestation front area) when looking at all natural ecosystems based on INPE[7] (*)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>3.0Mha of forests (32.8% of forest area in 2000) when looking only at estimates from Terra-i; 9.6Mha (16.9% of all natural ecosystems area in 2000) based on INPE[7] (*)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Throughout, but mostly concentrated in Matopiba (northern region) and Mato Grosso state</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>0.4Mha (7.7% of forests in 2018) when looking only at forest estimates based on a global assessment</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>0.3Mha (3.5% of forest area in 2000) when looking only at forest estimates based on a global assessment</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>3.7Mha (40.5% of forest area in 2000) when looking only at forest estimates based on a global assessment</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Decreased between the early 2000s and the late 2000s but has recently ticked up</td>
</tr>
<tr>
<td>Future trends</td>
<td>Trends to persistent deforestation</td>
</tr>
</tbody>
</table>

Key responses

Protected areas	Protected areas cover about 210,000 ha; the majority of these are “sustainable use” protected areas, in which certain extractive activities are permitted[22].
Recognition of IPLCs	Indigenous reserves cover nearly 100,000 ha of the Cerrado (about 5%)[21].
Land-use zoning	The Forest Code specifies a certain portion of each property must be set aside for conservation; the national environmental registry allows landowners to plan these set-asides and declare them to environmental agencies[18,19].
Deforestation monitoring	Official annual monitoring of vegetation loss was recently launched[20], allowing for the assessment of overall clearing trends and deforestation trends on individual properties when overlaid on the national environmental registry.
Traceability of supply	Some soy companies are moving toward mapping their suppliers and assessing their land use[22]. In late 2017, more than 70 companies (soy and meat producers and traders) signed the Cerrado Manifesto to prevent further destruction of natural vegetation in the Cerrado[21].
REDD+ projects	National REDD+ strategy could be integrated into public Cerrado protection policies by creating incentives for retaining and restoring Cerrado vegetation[21].

Note: Estimates form national sources are considered here instead of Terra-i estimates.
Main outcomes

The Cerrado has long been Brazil's environmental “sacrifice zone”[27], due to the relatively weak protections it is afforded under the Forest Code and the protected areas system. As a result, most deforestation and conversion in the Cerrado is permitted under law[26]. Private sector initiatives to monitor soybean and cattle producers have not materialized[24].

Recommended future actions

- Expand protected areas to at least 17% of the minimum called for under the Convention on Biological Diversity (CBD)[28].
- Reduce deforestation on private properties with market initiatives for sustainable production and through payments for environmental services (PES)[25, 26].
- Expand technical assistance to incentivize productivity in the cattle sector[27].

References

DEFORESTATION FRONT

CHOCÓ-DARIÉN

The moist forests of the Chocó-Darién, separated from the Amazon by the Andes, are rich in biodiversity. There are still intact forest areas, despite continuing large-scale forest loss. Protected areas are helping, along with efforts to introduce carbon credit schemes and sustainable forest management.

Drivers of deforestation

Cattle ranching	The most significant driver overall[3] and the largest agent of change in 2010-2015 in all three countries (94% in Panama, 76% in Colombia, and 59% in Ecuador)[4].
Smallholder farming	Relatively small-scale farming, including coca production[5], bananas[6] and oil palm[7], is responsible for much of forest loss in Colombia and Panama and is important in Ecuador[8].
Large-scale agriculture	Significant, particularly in Colombia and Ecuador (mainly oil palm).
Mining operations	Concessions covered over 960,000ha by 2011 and there are 20 oil blocks in Colombia[2]. Most current mining is illegal, uncontrolled and thus hard to measure[8].
Road expansion	Road building and proximity to roads[9] are both important drivers of forest loss in some areas.
Urban expansion	Small impact[10].

- Primary cause of forest loss and/or severe degradation
- Secondary cause of forest loss and/or severe degradation
- Less important cause of forest loss and/or severe degradation

Underlying causes

Population growth, insecure tenure, corruption and armed conflict. New roads, railroads, ports and oil infrastructure are planned[2].

Countries, region

Countries, region	Ecuador, Colombia, Panama
Forest type	Lowland and mountain tropical forest, mangrove
Total area	1.3Mha
Forest area in 2018	1.1Mha (85.3% of total deforestation front area)
Forest loss 2004-2017	0.03Mha (2.3% of forest area in 2000)
Location of deforestation	Mainly in Ecuador[3]
Total forest core area in 2018	0.6Mha (54.4% of forests in 2018)
Fragmented forests 2000-2018	0.05Mha (4.2% of forest area in 2000)
Accumulated burned area, 2002-2019	0.02Mha (2.1% of forest area in 2000)
Deforestation trend	Decreased until 2015, but has increased again in recent years
Future trends	Analyses project losses over 30-40 years of ~1.5Mha (9% of total)[2].

Responses

Protected areas	Protected areas and indigenous territories cover over 2.5Mha of the Chocó. They are generally successful[2], although losses have been noted by the Ministry of Environment in Colombia[10].
Carbon trading	The Chocó-Darién Conservation Corridor leverages carbon credits to protect community-owned forests on Colombia’s Atlantic coast[11].
Sustainable production	WWF is supporting sustainable production capacities of local communities in Ecuador in order to reduce agricultural frontier expansion.
Policy initiatives	The 5 Great Forests Initiative is a multi-government initiative to protect Mesoamerican forests, including the Darién; its aims include eliminating illegal cattle ranching. In Ecuador, the Socio Bosque programme provides economic support for poorer private and communal landholders who maintain forest cover, and the country’s Nationally Determined Contributions (NDC) and REDD+ strategy prioritizes the Choco.
Sustainable forestry	Some sustainable harvesting methods have been introduced in Panama[12].
Land-use zoning	A major land-use planning exercise by WWF has identified priority areas for conservation[13].
Restoration	Forest restoration in the Ecuadorian Choco has been prioritised in the government’s National Reforestation Plan.

- Deployment at wider scale
- Actively used and expanding
- Project-specific, experimental

Main outcomes

Much of the area remains intact, but efforts have yet to reduce the rate of forest loss significantly; indeed, it has been increasing in some parts. There are now some government commitments to limit the scale of conversion.

Recommended future actions

- Establish more protected areas.
- As much of the forest will continue to be used, explore alternatives that retain forest cover, including particularly carbon credits.
References

THE MAYA FOREST

Key responses

Protected areas
Conservation areas protect over 5.8Mha of tropical rainforest from conversion to cattle ranching and agriculture. Some of these areas have proven effective[1], while others face increasing threats[5].

Recognition of IPLCs
The Maya Forest has large areas titled as indigenous and local community lands, particularly in Mexico. This is associated with low deforestation rates, particularly where forests are managed collectively[10; 12].

Agricultural intensification
In order to prevent the expansion of the agricultural frontier, government subsidies have increasingly fostered agricultural intensification[15], but not always with sufficient safeguards to prevent deforestation[19; 20].

Payment for environmental services
PES programmes have been partially effective at temporarily halting deforestation in the Maya Forest[10; 32], but their coverage has been limited.

Community forestry
Community forestry is associated with lower deforestation rates across the Maya Forest[11; 30]. The number of communities successfully managing their forest resources is still limited as constraints sometimes outnumber opportunities in forest management[13; 24].

REDD+ projects
Several REDD+ projects have been implemented in the region. Recent studies point to mixed results, both at environmental and at social level[19; 24].

Voluntary standards
Environmental certification has become increasingly common for certain commodity crops such as palm oil. There is, however, little information on their effectiveness in containing deforestation in the context of the Maya Forest.

References

The forests of West Africa, also referred to as the Upper Guinea forest, stretch from Guinea to Ghana. They are under pressure not only from the expansion of commercial agriculture and mining, but also from local peoples’ resource use in their quest for improved livelihoods. Different initiatives are in place to support smallholders and communities, ensure sustainable supply of agricultural commodities such as cocoa and palm oil, and regulate and control illegal logging.

Drivers of deforestation

Smallholder farming
Shifting cultivation and expansion of tree crops,[1,2] including cocoa, the latter mainly in Ghana. Some of these crops are established after forest clearing, and smallholders migrate into new forestlands looking for more fertile ground after plantations age[3,4].

Commercial logging
Under way legally and illegally, also in protected forest reserves (e.g. in some southern regions of Ghana) which constitute the main remaining tracts of primary tropical forests[5]. Logging is stimulated by demand from local and foreign buyers[6]. In Liberia, logging companies are behind community forestlands[7].

Fuelwood and charcoal
People rely on fuelwood and charcoal as their energy source. This has profound effects on the standing forests, which are the source of raw materials. Some charcoal production originates from smallholder lands and some from non-designated public lands[8].

Mining operations
A threat for biodiverse areas in western Liberia[9], and expanding in some forest reserves in Ghana. This is associated with the opening of roads to prospective mining sites under construction[10], but also triggered by illegal gold mining[11], such as in the Dunkwa region in Ghana where some cocoa farmers have sold their lands to miners[12].

Underlying causes
Link to an increase in settlements close to forest reserves with unclear tenure, and tenure issues relating to settlements that existed before the reserves’ demarcation[13]. A growing urban population and presence of foreign investors increasing the demand for timber and minerals add pressure on the forests[14].

Responses

Protected areas
Nearly 2,000 protected areas cover around 10% of West Africa as a whole, but around 90% of these protected areas are small and dominated by forest reserves. There are 53 protected areas with international designations, including 17 Biosphere Reserves[15].

Timber legality
Ghana signed a voluntary partnership agreement (VPA) with the EU which includes a wood traceability system from production zones to end buyers[16], although progress is slow due to strong vested interests among political elites[17]. Liberia has also signed a VPA with the EU, but the process in practice is slower[18].

Voluntary standards
Some palm oil companies have embraced RSPO standards to reduce impacts of plantation development on high conservation value (HCV) areas. Public and private partnerships for supporting sustainable commodity supply linked to zero deforestation goals have been set up in the context of the African Palm Oil Initiative (APOI) and the Cocoa and Forests Initiative (CFI)[19]. Companies have signed on to the TFA 2020 Alliance aimed at achieving zero deforestation.

Recognition of IPLCs
Initiatives to enhance local tenure rights are in place in Ghana through the Community Resource Management Area (CREMAs) and expanding in some forest reserves in Ghana. This is associated with the opening of roads to prospective mining sites under construction[20], but also triggered by illegal gold mining[21], such as in the Dunkwa region in Ghana where some cocoa farmers have sold their lands to miners[22].

Concessions
A threat for biodiverse areas in western Liberia[23], and expanding in some forest reserves in Ghana. This is associated with the opening of roads to prospective mining sites under construction[24], but also triggered by illegal gold mining[25], such as in the Dunkwa region in Ghana where some cocoa farmers have sold their lands to miners[26].

REDD+ projects
Liberia made a zero-deforestation commitment and entered a partnership with the government of Norway for REDD+ and agricultural development in 2014[27], yet efforts aimed at building the reference level are still ongoing[28]. In Ghana, the REDD+ programme includes support to climate-smart cocoa practices by improving access to inputs and services, including replanting, to enhance the productivity of farms[29]. Ghana has agreed on performance-based payments for carbon reduction of up to US$50 million under the Forest Carbon Partnership Facility (FCPF)[30].

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Liberia, Ivory Coast, Ghana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Moist and dry semi-deciduous forest in the south, and savannah woodlands in the north</td>
</tr>
<tr>
<td>Total area</td>
<td>30.0Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>12.3Mha (40.9% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.8Mha (5.6% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>In western portion of Liberia and southwest portion of Ghana.</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>4.0Mha (32.9% of forests in 2018)</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>2.7Mha (19.0% of forest area in 2000)</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>2.4Mha (17.4% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Increased, particularly in Liberia and Ghana</td>
</tr>
<tr>
<td>Future trends</td>
<td>Increase may continue over time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy area</th>
<th>Deployment at wider scale</th>
<th>Actively used and expanding</th>
<th>Project-specific, experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDD+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land rights</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main outcomes

Efforts to tackle deforestation and forest degradation have still to prove effective. RSPO sustainability standards have to be embraced more extensively by palm oil companies, for protecting HCV areas and local people’s rights. Initiatives for enhancing performance of smallholder cocoa producers are showing good results and committing all key companies, traders and processors across the value chain[20]. While efforts to halt illegal logging are in place, persistent extraction driven by expanding demand makes it a difficult to control timber harvesting[21].

Recommended future actions

- Improve enforcement against illegal logging while providing the means for smallholders and communities to undertake sustainable forest management [20].
- Support agricultural intensification on existing farmlands to reduce pressure on forest areas for expansion of commercial crops[22].
- Monitor compliance with environmental regulations for plantations development and mining operations, along with compliance with social safeguards.

References

DEFORESTATION FRONT

CAMEROON

The region still holds huge forest areas, with approximately 40% forest cover across the country[1]. Multiple drivers are present in the forest frontiers in Cameroon from mining, logging, and agriculture. Both, traditional and artisanal practices embraced by local populations co-exist with industrial economies, which tend to interact in multiple ways. Major causes of deforestation are linked to agriculture, particularly linked to the expansion of commercial crops. Industrial logging and artisanal timber harvesting contribute to forest degradation. Progress has been made to halt deforestation, but significant institutional, social and economic challenges still persist.

Drivers of deforestation

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallholder farming</td>
<td>Small-scale farming and shifting cultivation are a major cause of forest loss[2-4], though some estimate that commodity crop farming is now a more important driver[5]. Commodity crop farming in Cameroon for palm oil production in particular is still often undertaken at a small scale, though production is for sale rather than subsistence[6]. The same can be found for maize and peanuts[7].</td>
</tr>
<tr>
<td>Large-scale agriculture</td>
<td>Large-scale commercial agriculture is also cited as an important and growing driver of deforestation[3], particularly for rubber and oil palm in southwest Cameroon[3, 4]. Some palm oil smallholders may not be strictly large scale but still manage hundreds of hectares[8, 12].</td>
</tr>
<tr>
<td>Fuelwood charcoal</td>
<td>Wood energy demand, for both charcoal and fuelwood, is an ongoing moderate driver of degradation and deforestation; it has less impact than agriculture, though the two are connected[2, 4].</td>
</tr>
<tr>
<td>Large-scale and small-scale logging</td>
<td>Commercial logging makes a moderate contribution to deforestation in Cameroon[2, 12], and has a larger impact on forest degradation. The domestic market, mostly supplied by small-scale logging, is bigger than the export market supplied by larger commercial operators[2, 5].</td>
</tr>
<tr>
<td>Infrastructure expansion</td>
<td>Infrastructure expansion is present but less frequently cited as a driver of deforestation[2-4]. Cameroon has received infrastructure investment from China. Most of these infrastructure projects have been in forested areas, and have been linked to deforestation[5, 10].</td>
</tr>
<tr>
<td>Urban expansion</td>
<td>Urban expansion is minor driver of deforestation, including as connected to fuelwood and charcoal demand[2-4].</td>
</tr>
<tr>
<td>Cattle ranching</td>
<td>Cattle ranching is present but not a frequently cited driver of deforestation[2-4].</td>
</tr>
<tr>
<td>Mining operations</td>
<td>Mining has been cited as an emerging driver of deforestation that must be monitored in the coming years[2].</td>
</tr>
</tbody>
</table>

Underlying causes

Underlying drivers of deforestation include institutional and policy factors (property rights and policies), demographics (population growth and population pressure), and economic changes (market growth and economic structures)[2]. Policy failure and corruption have played a role in continued illegal logging in Cameroon[14].

Main outcomes

Small and large-scale agriculture continue to be primary drivers of deforestation, while wood energy demand along with industrial and artisanal logging are important secondary drivers. Underlying drivers of deforestation related to property rights and policies indicate that deforestation will continue unless these root causes are adequately addressed. Focus on Forest Law Enforcement, Legality, and Governance (FLEGT) has been particularly prominent, but its effectiveness is uncertain.

Recommended future actions

- Enforce existing policy responses to address deforestation, including sustainable forest management, forest monitoring and diversification of livelihoods[4].
- Complement efforts focused on illegal timber with enhanced responses related to agriculture as a primary driver of deforestation.
- Promote certification of agricultural commodities to improve the practices and livelihoods of medium- and small-scale producers.

Countries, region | Cameroon, Central Africa
Forest type | Tropical moist forest
Total area | 10.3Mha
Forest area in 2018 | 8.2Mha (79.4% of total deforestation front area)
Forest loss 2004-2017 | 0.4Mha (4.9% of forest area in 2000)
Location of deforestation | Deforestation is primarily located in the south, south-west and north-east of the country
Total forest core area in 2018 | 4.5Mha (55.4% of forests in 2000)
Fragmented forests 2000-2018 | 1.1M ha (12.6% of forest area in 2000)
Accumulated burned area, 2002-2019 | 1.4Mha (16.9% of forest area in 2000)
Deforestation trend | Decreased with some oscillations until 2014, but has increased again more recently
Future trends | Deforestation linked to agriculture may continue, though a variety of responses may help decrease deforestation rates

- Primary cause of forest loss and/or severe degradation
- Secondary cause of forest loss and/or severe degradation
- Less important cause of forest loss and/or severe degradation
Key responses

Timber legality and assurance systems
Forest Law Enforcement, Legality, and Governance (FLEGT) activities include a voluntary partnership agreement (VPA) with the EU, to which Cameroon exports about 60% of its timber[1]. The VPA encourages legal timber production, and also works to improve forest governance and law enforcement.

Protected areas
Empirical evidence has shown that protected areas have low rates of deforestation, but also that low deforestation rates are likely more influenced by the remote locations of parks rather than by park designation[11].

PES including REDD+
REDD+ has been a focus of deforestation studies and response options in recent years[2, 10]. Increased coordination among stakeholders on REDD+ in Cameroon has improved progress, and further implementation may be successful if it offers multiple benefits for people and biodiversity[3].

Forest landscape restoration
Cameroon pledged to restore a very ambitious 12Mha of forest under the Bonn Challenge. This effort has included FLEGT VPA efforts[1, 30] and a review of forest law[12].

Integrated land-use planning
The forest law of the 1990s provides for 1) a permanent forest estate that is intended to remain forested and 2) a non-permanent forest estate that can be converted to other land use. In addition, a law was passed in 2011 defining the framework for land-use planning and sustainable development planning.

Recognition of IPLCs
Community forest legislation was put in place in 1994, and 182 community forests were active in Cameroon by 2016. Results have been mixed; community forests have struggled with illegal logging, and are seen by some as an impediment to FLEGT VPA efforts[19, 31].

Improving agricultural yields
Increasing farm yields may limit deforestation, while also noting that land tenure laws can incentivize deforestation, as well as the lack of tenure security[4].

Voluntary standards
To manage deforestation related to oil palm expansion, efforts have been undertaken to establish RSPO standards for sustainable palm oil production in Cameroon[21, 22]. Forest certification has been found to have potential to reduce unsustainable use of forests in Cameroon[23]. A recent study did not find reduced deforestation in certified forest concessions, but did assert potential for future impacts under expanded certification[24]. Cocoa certification is also developing in Cameroon[25].

Forest loss

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest loss (thousand hectares)</td>
<td>172</td>
<td>169</td>
<td>162</td>
<td>155</td>
<td>148</td>
<td>141</td>
<td>134</td>
<td>127</td>
<td>120</td>
<td>113</td>
<td>106</td>
<td>99</td>
<td>92</td>
<td>85</td>
</tr>
</tbody>
</table>

References
1. EU FLEGT. The Cameroon-EU Voluntary Partnership Agreement.
GABON/CAMEROON/REPUBLIC OF CONGO

Spread over three countries – Gabon, Cameroon and the Republic of Congo – the Tri-National Dja-Odzala-Minkébé (TRIDOM) region still holds large forest areas, but deforestation, particularly driven by smallholder farming and large-scale agriculture, is expected to increase with likely future development of roads. Mining also places pressures on the forest frontiers. Improved policies are in place aimed at sustainable forest management, forest monitoring and diversification of livelihoods but are in need of more effective enforcement as well as wider resources and institutional support.

Drivers of deforestation

- Smallholder farming: Currently small-scale farming and shifting cultivation is a major cause of forest loss\(^1\). Commodity crop farming\(^2\) is increasing, with medium-scale cocoa plantations along the roads throughout TRIDOM. Commodity crop farming for palm oil production in particular is still often undertaken at a small scale.

- Large-scale agriculture: Large-scale commercial agriculture is an important and growing driver of deforestation\(^3\), particularly for palm oil and rubber production. In the Republic of Congo, the government has allocated 120,000 ha for oil palm development in the middle of TRIDOM. In Cameroon, a rubber plantation near the Dja reserve has plans to expand. All three countries have expansion of industrial agriculture in their national development plans. Large-scale agriculture not only directly impacts deforestation but also has significant indirect impacts such as through the influx of workers, families and services into thinly populated places.

- Fuelwood and charcoal: Wood energy demand, both for charcoal and fuelwood, is an ongoing moderate driver of deforestation and degradation\(^4\). Commodity crop farming\(^4\) is an ongoing moderate driver of deforestation and degradation\(^4\). Large-scale logging, urban expansion and infrastructure expansion are also important drivers of deforestation.

- Infrastructure expansion: Infrastructure expansion is a present but less frequently cited driver of deforestation\(^5\). All three countries have received significant infrastructure investment from China. The Sangmelima-Dja road, which has been improved and is being paved, opens up the heart of the TRIDOM, and facilitates logging, bushmeat trade and migration processes. Another road with major impact is the Dja-Odzala National Park. The 600 MW Chollet hydropower dam, to be built on the Dja river in a pristine area on the Cameroon-Congo border, could have a huge impact on forests. Most infrastructure projects have been in forested areas, and they have been linked to deforestation\(^6\).

- Urban expansion: Urban expansion is a minor driver of deforestation, including as connected to fuelwood and charcoal demand\(^7\).

Underlying causes

Underlying drivers of deforestation include institutional and policy factors (property rights and policies), demographics (population growth and population pressure), and economic changes (market growth and economic structures)\(^8\). Policy failure and corruption have played a role in continued illegal logging in Cameroon, Gabon and the Republic of Congo\(^9\).

Main outcomes

Small- and large-scale agriculture continue to be primary drivers of deforestation, while wood energy demand and industrial and artisanal logging are important secondary drivers. Underlying drivers of deforestation related to property rights and policies indicate that deforestation will continue unless these root causes are adequately addressed.

Recommended future actions

- Enforce existing policy responses to deforestation, including sustainable forest management, forest monitoring and diversification of livelihoods\(^10\).
- Promote land-use planning taking into account high conservation value areas to prevent allocation of prime forest areas for industrial development.
- Complement efforts focused on illegal timber with enhanced responses related to agriculture as a primary driver of deforestation.

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Gabon, Cameroon, Republic of Congo, Central Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Tropical moist forest</td>
</tr>
<tr>
<td>Total area</td>
<td>11.5Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>11.2Mha (97.1% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.1Mha (1.0% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Northern portion of Gabon, in the border with Cameroon and Republic of Congo</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>9.9Mha (88.7% of forests in 2018)</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>0.1Mha (0.8% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Increasing, with oscillations</td>
</tr>
<tr>
<td>Future trends</td>
<td>Deforestation is expected to increase due to various economic development initiatives and population growth</td>
</tr>
</tbody>
</table>

\(^1\) Primary cause of forest loss and/or severe degradation
\(^2\) Secondary cause of forest loss and/or severe degradation
\(^3\) Less important cause of forest loss and/or severe degradation
Key responses

Timber legality and assurance systems
Cameroon has a voluntary partnership agreement (VPA) with the EU that encourages legal timber production, and works to improve forest governance and law enforcement. Gabon declared in 2019 that by 2021 all timber needs to be FSC certified. Gabon also plans to aggressively increase forest cover under community forestry arrangements to reduce illegal logging.

PES including REDD+
REDD+ and other climate funding mechanisms have been a focus of deforestation studies and response options in recent years[5-8]. This has resulted in tangible climate funding for Gabon through the Central African Forest Initiative (CAF). The Republic of Congo is also on track to receive CAF funding. Other several initiatives (Green Climate Fund, Nationally Appropriate Mitigation Actions) may result in additional funding for these countries in the near future to offer multiple benefits for people and biodiversity[9-10].

Integrated land-use planning
The Cameroon forest law of 1994 provides for a permanent forest estate that is intended to remain forested and a non-permanent forest estate that can be converted to other uses. In addition, a law was passed in 2011 defining the framework for land-use planning and sustainable development planning. Cameroon, under the new GEF-7 programme, aims to harmonize land-use planning for the TRIDOM zone. Gabon and Congo both aim to harmonize land-use planning under their respective CAFI programmes. There is no TRIDOM transboundary land-use planning initiative active across the three countries.

Improved agriculture
The Republic of Congo government has declared that it will focus its agricultural development in the savannah zone to protect the forest zone. Gabon intends to focus its agroindustry development outside areas of high conservation value (HCV); its current oil palm expansion is mainly in the savannah zone.

Protected areas
Empirical evidence has shown that protected areas have low rates of deforestation, but also that low deforestation rates are likely more influenced by the remote locations of parks rather than by park designation[11-12].

Forest landscape restoration
Cameroon pledged to restore 12Mha of forest under the Bonn Challenge[13].

Improving agricultural yields
One study suggests that increasing farm yields may limit deforestation, while also noting that weak land tenure laws can incentivize deforestation[14].

Voluntary standards (RSPO)
To manage deforestation related to oil palm expansion, efforts have been undertaken to establish RSPO standards for sustainable palm oil production in Cameroon, Congo[15-16]. The Gabonese government has already stated that it wants to develop certified palm oil.

Voluntary standards (forest certification)
Forest certification has been found to have potential to reduce unsustainable use of forests in Cameroon[17]. A recent study in Cameroon did not find reduced deforestation in certified forest concessions, but did assert potential for future impacts under expanded certification[18]. However, several FSC-certified logging operators have sold their concessions or dropped FSC certification. A recent change was the decision by the government of Cameroon to degazette the previously FSC-certified Wijma logging concession to make it a oil palm concession. Republic of Congo currently holds the largest areas of FSC-certified natural tropical forest in the world. Gabon intends to move to 100% FSC for all its industrial logging concessions.

Recognition of IPLCs
Community forest legislation was put in place in Cameroon in 1994, and 182 community forests were active in Cameroon by 2016. In the Republic of Congo, community forestry is not yet a legal instrument. Results have been mixed: community forests have struggled with illegal logging, and are seen by some as an impediment to FLEG VPA efforts[19-20].

Deployment
- Actively used and expanding
- Project-specific, experimental

Forest loss
<table>
<thead>
<tr>
<th>Deforestation year</th>
<th>Cameroon</th>
<th>Gabon</th>
<th>Congo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>3,898</td>
<td>2,415</td>
<td>2,944</td>
</tr>
<tr>
<td>2005</td>
<td>4,105</td>
<td>2,569</td>
<td>3,054</td>
</tr>
<tr>
<td>2006</td>
<td>4,298</td>
<td>2,699</td>
<td>3,178</td>
</tr>
<tr>
<td>2007</td>
<td>4,491</td>
<td>2,821</td>
<td>3,293</td>
</tr>
<tr>
<td>2008</td>
<td>4,694</td>
<td>2,943</td>
<td>3,409</td>
</tr>
<tr>
<td>2009</td>
<td>4,902</td>
<td>3,067</td>
<td>3,526</td>
</tr>
<tr>
<td>2010</td>
<td>5,139</td>
<td>3,192</td>
<td>3,629</td>
</tr>
<tr>
<td>2011</td>
<td>5,384</td>
<td>3,320</td>
<td>3,747</td>
</tr>
<tr>
<td>2012</td>
<td>5,612</td>
<td>3,449</td>
<td>3,850</td>
</tr>
<tr>
<td>2013</td>
<td>5,847</td>
<td>3,584</td>
<td>3,943</td>
</tr>
<tr>
<td>2014</td>
<td>6,001</td>
<td>3,720</td>
<td>4,039</td>
</tr>
<tr>
<td>2015</td>
<td>6,123</td>
<td>3,850</td>
<td>4,122</td>
</tr>
<tr>
<td>2016</td>
<td>6,257</td>
<td>3,980</td>
<td>4,210</td>
</tr>
<tr>
<td>2017</td>
<td>6,383</td>
<td>4,123</td>
<td>4,303</td>
</tr>
</tbody>
</table>

References
5. Mayers, J., Ngfulgo, S., Asfawbe-S Undo, S., China in Cameroon’s forests. MED London.
DEFORESTATION FRONT

DEPRECATED REPUBLIC OF THE CONGO AND CENTRAL AFRICAN REPUBLIC

This region still holds large and intact forest areas, although the rate of deforestation has accelerated in recent years. Much of the forest conversion is driven by small-scale and shifting agriculture, and timber harvest for charcoal production which contributes to deforestation and forest degradation. The growth of large-scale agriculture is limited mainly due to poor development of infrastructure. Main challenges are linked to support development, green energy sources for cooking fuel and alleviating poverty while protecting existing natural forests, and biodiversity.

Drivers of deforestation

- **Smallholder farming**
 - Small-scale, shifting agriculture causes over 90% of forest loss[5], particularly for cassava, oil palm, cocoa and maize[5]. It is projected to increase[6] although large areas of forest still remain[7].

- **Charcoal production**
 - Significant in DRC, particularly closer to large towns and cities, with estimates of over 90% of the population using charcoal for cooking, due to lack of affordable energy alternatives[8], although likely more related to degradation than deforestation.

- **Large-scale agriculture**
 - A minor driver for oil palm[9], rubber, soy and cocoa[10]; some estimates are as low as 1% of total loss[11]. Fall in oil and gas prices is likely to drive additional industrial-scale agriculture in the region.

- **Timber extraction**
 - Less significant than other drivers[12] and smaller than other Congo Basin countries but it occurs widely, is increasing[13], is probably unsustainable[14], and opens up forests for agriculture[15]. Includes much illegal logging[16], mainly for domestic markets[17], and also some to Chinese and other export markets[18].

- **Mining operations**
 - Increasing, particularly in DRC[19], involving foreign investors like China[20] and small-scale, often illegal artisanal miners[21], including in protected areas[22] but mainly in savanna[23].

- **Rural roads and infrastructure**
 - Doubled inside concessions in the Congo Basin since 2003[24], associated with increased forest loss[25] and foreign investment. However, DRC has seen less expansion than other countries in the region and also some abandonment of logging roads.

Underlying causes

Population increase is a major, perhaps the most important, cause[26], along with poor market access[27] and lack of affordable energy alternatives to charcoal. Profits from oil and gas may have spurred rural-to-urban migration, reducing the rate of forest loss[28]. Conflict occurs widely; this can increase forest loss by increasing illegal cutting, but can also reduce rate of loss due to mining[29]. Research suggests that even in areas that have largely been cleared, almost half the land may still be primary or secondary forest[30]. Policy and weak governance or corruption are also important contributory factors to current forest loss.

Table: Countries, region

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Democratic Republic of the Congo (DRC) and Central African Republic (CAR), Central Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Tropical moist forest, dry forest</td>
</tr>
<tr>
<td>Total area</td>
<td>45.6Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>36.3Mha (79.8% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.7Mha (1.8% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Main fronts in east and south of the region</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>17.4Mha (48.0% of forests in 2018)</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>6.9M ha (18.1% of forest area in 2000)</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>7.4Mha (19.4% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Increasing, but still relatively low in both DRC and CAR. Intensified loss radiating from cities like Beni and Kisangani[11]</td>
</tr>
<tr>
<td>Future trends</td>
<td>Likely to increase</td>
</tr>
</tbody>
</table>

Table: Responses

<table>
<thead>
<tr>
<th>Key facts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected areas</td>
<td>Protected areas cover 1.18Mha of CAR, 18% of the country[22]; and 32.4Mha of DRC, almost 14% of the country[23]. They are judged fairly successful at maintaining forest cover[24], even in conditions of conflict[25].</td>
</tr>
<tr>
<td>REDD+</td>
<td>There is much interest in REDD+, and some schemes, but institutional structures in DRC hamper progress[26] and have created competition between state and customary authorities[27]. CAR has a grant to develop a national REDD+ investment framework[28].</td>
</tr>
<tr>
<td>Restoration</td>
<td>CAR has committed to restore 3.5Mha under the Bonn Challenge, and DRC 8Mha[29].</td>
</tr>
<tr>
<td>Voluntary standards</td>
<td>DRC has a national FSC standard[30] and has had certified concessions, although following a complaint from Greenpeace one FSC certificate was withdrawn in 2011[31]. DRC and CAR had no active FSC certificates as of 2018[32].</td>
</tr>
<tr>
<td>Timber legality</td>
<td>DRC signed the Brazzaville Declaration in 2018, aimed at protecting some of the world’s great peat deposits[33], although recent plans put this commitment in doubt[34].</td>
</tr>
</tbody>
</table>

- **Deployment at wider scale**
- **Actively used and expanding**
- **Project-specific, experimental**
Main outcomes

Smallholder agriculture that results from the development of human settlements in the forest frontiers continues to be the main driver of deforestation in DRC and CAR, since there is still a relatively low pressure from commercial activities. Forest degradation and deforestation is also due to a high reliance of people on charcoal as the main source of energy for cooking, and timber markets beyond the countries’ boundaries. Efforts to support local livelihoods and compensate for local conservation efforts, largely embraced with REDD+, still need to be consolidated and scaled up to achieve meaningful impacts.

Recommended future actions

- Increase public and private sector commitments to sustainable development of agriculture through adoption of best management practices and multi-stakeholder initiatives aimed at deforestation-free commodity supply. WWF is testing an “integrated agribusiness-conservation model” in Cameroon to engage smallholder farmers in deforestation-free food supply chains, which if successful could be replicated in the entire Congo Basin.
- Large scale investment in alternative (green) energy projects to convert urban dwellers from charcoal for cooking. Such alternatives must be competitively priced to reduce the demand, which is increasing apace with the rate of population growth.

References

DEFORESTATION FRONT

ANGOLA

Angola has large areas of miombo forest remaining. These were preserved and even expanded slightly during the long civil war, but are now being converted on a large scale, mainly for subsistence agriculture but also larger-scale cropping and charcoal making.

Drivers of deforestation

Smallholder farming
The major driver of change since the end of hostilities has been conversion of miombo woodland to agriculture (including slash-and-burn)\(^2\), particularly small-scale crops suitable for drylands\(^3\), as people moved back into former conflict areas\(^4\). Degradation is often a precursor to complete conversion of forests in farming areas\(^5\).

Fuelwood and charcoal
Charcoal and fuelwood are major priorities for many rural dwellers, and influence large areas of miombo. They are a primary factor in forest degradation\(^6\), rather than complete deforestation\(^7\). Charcoal is particularly important along roads\(^8\).

Transport infrastructure
Deforestation often begins along new roads and was also associated with construction of the Benguela railway in the past\(^9\).

Large-scale agriculture
Large-scale land acquisitions, covering several million hectares, started in the late 1980s and accelerated after 2002. Produce has been mainly for domestic consumption; companies are often foreign-owned\(^10\).

Timber extraction
The timber trade has oscillated over time but is now increasing again. It is important for both domestic use and for export\(^11\). Illegal logging takes place on a large scale, including for Chinese companies\(^12\).

Fire
Bushfires are used to clear for agriculture\(^13\). Uncontrolled fires are destroying large areas of forest and also harming the livelihoods of local San communities\(^14\).

Urban expansion
Deforestation tends to spread out from major cities\(^15\), although urban development is also reducing shifting agriculture and other practices that degrade or destroy forests.

Tree plantations
Angola had 100,000ha of plantations before independence\(^16\); it is not clear if new plantations are being established. Some plantations are logged illegally\(^17\).

Mining operations
Mining has large environmental impacts and is a cause of deforestation in some areas\(^18\).

Underlying causes
The 27-year civil war damaged nature\(^19\) but also meant that whole areas were effectively left alone; the end of hostilities has rapidly increased the rate of land-use change. This has been fuelled by population growth, an influx of oil wealth and continuing issues relating to corruption.

Key responses

Protected areas
There are 14 protected areas covering around 12% of the country\(^20\). During the war these areas were badly poached, and habitats destroyed. There is currently some optimism of greater management effectiveness\(^21\), although there is also a need for more protected areas; few of the current total are in miombo, and most are effectively unmanaged.

Recognition of IPLCs
Angola voted in favour of the UN Declaration on the Rights of Indigenous Peoples on 13 September 2007, but the San, Himba and other groups continue to experience land expropriations and other problems\(^22\).

Timber legality
The government of Angola announced new rules to curb illegality in the timber trade in 2018\(^23\).

Land-use zoning
There are efforts to address land tenure, but they remain partial and not always effective\(^24\); issues of expropriation of land by the elite and companies continue to occur.

Fire management
Angola has been seeking collaboration with FAO in addressing the issue of fire, including through community education programmes\(^25\).

REDD+
Angola had no REDD+ projects in 2016\(^26\); although the potential is recognized\(^27\).

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Angola, Central Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Miombo</td>
</tr>
<tr>
<td>Total area</td>
<td>10.5Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>4.2Mha (39.6% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.1Mha (3.1% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Mainly in the south and east</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>1.1Mha (27.4% of forests in 2018)</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>0.3Mha (6.5% of forest area in 2000)</td>
</tr>
<tr>
<td>Total burned area</td>
<td>1.9Mha (43.4% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Historically a slight increase in miombo 1990-2000(^28), but loss grew sharply after the civil war. Increasing, with oscillations over time</td>
</tr>
<tr>
<td>Future trends</td>
<td>Deforestation has increased over the past decade; future direction is unclear</td>
</tr>
</tbody>
</table>

Key facts

<table>
<thead>
<tr>
<th>Drivers of deforestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallholder farming</td>
</tr>
<tr>
<td>Fuelwood and charcoal</td>
</tr>
<tr>
<td>Transport infrastructure</td>
</tr>
<tr>
<td>Large-scale agriculture</td>
</tr>
<tr>
<td>Timber extraction</td>
</tr>
<tr>
<td>Fire</td>
</tr>
<tr>
<td>Urban expansion</td>
</tr>
<tr>
<td>Tree plantations</td>
</tr>
<tr>
<td>Mining operations</td>
</tr>
</tbody>
</table>

- Primary cause of forest loss and/or severe degradation
- Secondary cause of forest loss and/or severe degradation
- Less important cause of forest loss and/or severe degradation

| Key facts | Angola, Central Africa | Miombo | 10.5Mha | 4.2Mha (39.6% of total deforestation front area) | 0.1Mha (3.1% of forest area in 2000) | Mainly in the south and east | 1.1Mha (27.4% of forests in 2018) | 0.3Mha (6.5% of forest area in 2000) | 1.9Mha (43.4% of forest area in 2000) | Historically a slight increase in miombo 1990-2000\(^28\), but loss grew sharply after the civil war. Increasing, with oscillations over time | Deforestation has increased over the past decade; future direction is unclear |

DEFORESTATION FRONT
Main outcomes

Most of the responses seem to be at an initial stage of discussion and pronouncements rather than concrete actions; even the protected area system is recognized as being ineffective and too small. The need for a national certification scheme is still being discussed.[23]

Recommended future actions

- Increase coverage and management within protected areas.
- Ramp up responses such as certification and REDD+.
- Strengthen enforcement of government regulations, particularly regarding logging, land acquisition and fire management.

References

ZAMBIA

Zambia is undergoing high and increasing rates of forest loss, but still has large forest resources. Attempts at control have largely failed outside protected areas, and forest reserves have also been lost.

Drivers of deforestation

- **Smallholder farming**: The main driver, linked to rural population growth and the demand for land for subsistence agriculture, expansion of cash crops like tobacco and cotton, and poor farming that exhausts soils and encourages additional land clearance.
- **Charcoal**: The key driver in some areas; extraction increases fire risk. Urban charcoal use persists even if electricity is available due to frequent outages and load shedding. Supplies close to 87% of domestic energy needs and 30% of rural industry requirements, e.g. brickmaking.
- **Timber extraction**: Significant, for domestic use and export, and opens up the forest to disturbance including fire. Illegal felling is rampant, e.g. illegal rosewood costs Zambia US$3.2 million a year. Zambia exports mainly to the Southern African Development Community (SADC) region but also to China and Taiwan.
- **Fire**: FAO estimates 5% of forest burns each year; often through accidental spread during burning of crop residues and cropland preparation. Fire is a major cause of forest loss and or severe degradation.
- **Livestock grazing**: Significant in some places and overgrazing is reported; burning to increase grazing also results in fires in forests.
- **Mining operations**: Causes some deforestation but is a minor factor overall.
- **Road expansion**: Stimulates deforestation by opening to agricultural expansion and charcoal production.

Underlying causes

Amongst underlying causes, population pressure has direct impacts on forest cover through pressure for land. Greater security of forest tenure is associated with better forest condition, while greater dependence on forests for livelihoods tends to create poorer forest condition.

Main outcomes

Despite efforts by the government, donors and NGOs, deforestation is continuing in Zambia, driven primarily by rising numbers of people using inefficient agriculture. Major structural interventions will be needed to reverse these trends. The San people remain seriously disadvantaged in the country.

Recommended future actions

- Increase effectiveness of the existing protected area network, particularly the large number of forest reserves, possibly through a planned rationalization of the system.
- Develop carbon markets.
- Address the worrying lack of certified forests.

Responses

- **Protected areas**: 641 protected areas covering 41.26% of the country, but 555 of these are forest reserves with varying degrees of effectiveness. Nonetheless, protected areas, including national forests, are identified as important for forest recovery.
- **PES incl. REDD+**: Research shows Zambian forests are still a major carbon sink despite losses, and growth rates may be being stimulated by higher CO2 levels. Carbon markets are important with a World Bank BioCarbon Fund project aiming to take a landscape approach to reducing forest loss.
- **Charcoal alternatives**: Government efforts focus on providing alternatives to charcoal, with increasing productivity and income seen as a key factor.
- **Voluntary standards**: A process has been ongoing since the 1990s, but still no certified forest. Tenure issues are problematic because all forests are state-owned.

Countries, region

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Zambia, Southern Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Tropical dry forest (miombo)</td>
</tr>
<tr>
<td>Total area</td>
<td>15.9Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>10.3Mha (64.5% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.4Mha (3.7% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Principally in the southeast of the country</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>4.1Mha (40.1% of forests in 2018)</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>1.1Mha (10.4% of forest area in 2000)</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>7.5Mha (70.1% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Increasing, more than doubled from 2010-2018 compared to the previous decade</td>
</tr>
<tr>
<td>Future trends</td>
<td>Likely to increase</td>
</tr>
</tbody>
</table>

Deployment at wider scale | Actively used and expanding | Project-specific, experimental

<table>
<thead>
<tr>
<th>Primary cause of forest loss and/or severe degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary cause of forest loss and/or severe degradation</td>
</tr>
<tr>
<td>Less important cause of forest loss and/or severe degradation</td>
</tr>
</tbody>
</table>
References

9. PROFOR. 2018. Food and forests: We can have them both. www.profors.org/content/food-and-forests-we-can-have-them-both

Mozambique remains a highly forested country, but deforestation has been steadily increasing since 2000. The majority of deforestation and forest degradation is related to unsustainable agricultural practices and timber extraction. Mozambique’s forests contribute with multiple social, economic and environmental benefits, which continue to be threatened in spite of current responses.

Drivers of deforestation

- **Smallholder farming**: Small-scale agriculture is a major cause of forest loss, accounting for 46% of biomass loss in one study of central Mozambique. According to Global Forest Watch (GFW), small-scale agriculture accounted for more than 90% of total forest cover loss from 2001-2015.
- **Fuelwood and charcoal production**: Fuelwood and charcoal production are the next most cited drivers of deforestation, including both local fuelwood collection and charcoal production to meet urban energy demand.
- **Urban expansion**: Urban expansion has been associated with 12% of deforestation in Mozambique. According to GFW data, this was a small but consistent driver of permanent deforestation between 2001-2015.
- **Small-scale timber extraction**: Logging is a small but steady driver of deforestation. Illegal logging has been a persistent problem, but has also received government attention for reform. Mozambique is one of the top African timber exporters to China.
- **Large-scale agriculture**: Large-scale agriculture is a very small contributor to deforestation, limited to 3% of biomass loss for one study in central Mozambique. Large-scale agriculture expansion into forest land has accordingly been much smaller than small-scale agriculture expansion in forest land.
- **Fires**: Wildland fires have long been a cause of some deforestation in Mozambique, primarily linked to purposely set fires for land clearing.

Underlying causes

Underlying drivers of deforestation in Mozambique are broadly linked to technological (such as inefficient use of fuelwood), demographic (high demand for wood for urban areas), economic (inefficient commercial agriculture markets) and institutional factors (limited institutional and law enforcement capacity). Additional underlying drivers include urban energy demand, population pressure and food insecurity.

Key responses

- **Land-use zoning**: Zoning exercises have been conducted in several areas. Integrated policies and additional support for community forestry and agroforestry have been called for.
- **Recognition of IPLCs**: Community registration of land-use rights for local communities has been ongoing since the 2000s. Mozambique’s legislation on community land-use rights is thought to be among the most progressive in Africa.
- **Timber legality**: Mozambique introduced governance reforms in the forest sector to limit illegal logging in 2018, and has implemented export bans on raw logs and total bans on several species.
- **Protected areas**: Protected areas in Mozambique, such as the Niassa Reserve, have been found to have lower deforestation rates than surrounding areas.
- **REDD+ strategy**: REDD+ is often listed as a response option, and the country has developed its national REDD implementation strategy.
- **Voluntary standards**: Mozambique had 60,000ha of FSC-certified forest as of 2015. This is a small area but represents the majority of planted forest land in Mozambique.
- **Fire management**: Various fire management policies have been implemented, including both support for fire management in parks and community-based fire management.

<table>
<thead>
<tr>
<th>Key responses</th>
<th>Mozambique, Southern Africa</th>
<th>Subtropical forests</th>
<th>21.9Mha</th>
<th>9.0Mha (40.9% of total deforestation front area)</th>
<th>0.3Mha (2.7% of forest area in 2000)</th>
<th>Mostly in the west and east, although relatively scattered</th>
<th>2.8M ha (31.0% of forests in 2018)</th>
<th>1.5M ha (15.6%, of forest area in 2000)</th>
<th>Increasing, with oscillations</th>
<th>Small-scale agriculture is likely to remain an important driver of deforestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries, region</td>
<td>Forest type</td>
<td>Total area</td>
<td>Forest area in 2018</td>
<td>Forest loss 2004-2017</td>
<td>Location of deforestation</td>
<td>Total forest core area in 2018</td>
<td>Fragmented forests 2000-2018</td>
<td>Accumulated burned area, 2002-2019</td>
<td>Deforestation trend</td>
<td>Future trends</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>deployment</td>
<td>actively used</td>
<td>project-specific, experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main outcomes

Small-scale agriculture continues to be a primary driver of deforestation, while wood energy demand, illegal logging and urban expansion are important secondary drivers. Underlying drivers of deforestation related to limited institutional and law enforcement capacity indicate that deforestation may continue.

Recommended future actions

- Implement policy and governance initiatives for curbing deforestation[25], building on recent efforts around land-use zoning and timber legality.

References

5. WRI. Global Forest Watch Dashboard.
7. IUCN. Mozambique Restoration Opportunities Assessment Methodology (ROAM).
DEFORESTATION FRONT

MADAGASCAR

Madagascar has been impacted by significant deforestation in the past, but primary forests still account for a quarter of forest cover. The island nation of Madagascar has developed its own distinct ecosystems and extraordinary wildlife. Around 95% of Madagascar’s reptiles, 89% of its plant life, and 92% of its mammals exist nowhere else on Earth. The forests are under growing pressure from agriculture, fuelwood and charcoal extraction, and also from uncontrolled fires.

Drivers of deforestation

Smallholder farming

Small-scale agriculture, largely slash-and-burn, is a major cause of forest loss, and has cultural importance[1-3]. Some small-scale agriculture is for cash crops, such as maize and peanuts[4], and for international markets, such as vanilla[5].

Fuelwood and charcoal

Fuelwood and charcoal demand is an important driver of deforestation[6-8]. As charcoal is a primary cooking fuel in urban areas, charcoal-related deforestation grows out of urban areas[8].

Fires

Both uncontrolled wildfires and fires set for grazing lands, often related to cattle ranching, have contributed to deforestation for a long time[9]. Fires are also sometimes accidentally started by charcoal makers[10].

Cattle ranching

Cattle ranching has been a long-time driver of deforestation in Madagascar[2, 7].

Small-scale logging

Commercial logging is a minor driver of deforestation[11]. Illegal logging of rare wood such as rosewood is significant[12, 13].

Mining operations

Both large-scale and artisanal mining, including gemstone mining, are contributing to deforestation in remaining forest areas[14].

Road expansion

Transport infrastructure is a persistent factor in deforestation in Madagascar[15, 16].

Underlying causes

Underlying drivers of deforestation include migration and property rights[17], as well as demographic growth and governance[18], and limited law enforcement. Economic factors are also important: a sustainable financial mechanism to combat deforestation is lacking.

KEY FACTS

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Madagascar, Southern Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Tropical moist forest to the east, and dry to the west</td>
</tr>
<tr>
<td>Total area</td>
<td>20.1Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>6.3Mha (31.5% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.7Mha (9.0% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Mostly in west and east, although relatively scattered</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>1.2Mha (18.9% of forest area in 2018)</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>1.9Mha (24.9% of forest area in 2000)</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>1.3Mha (17.7% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Increasing</td>
</tr>
<tr>
<td>Future trends</td>
<td>Deforestation related to small-scale agriculture and wood energy demand may continue</td>
</tr>
</tbody>
</table>

Responses

Protected areas

Protected areas have been studied and found to be effective at limiting deforestation in Madagascar[1-16].

PES including REDD+

REDD+ has been posited as a potential response[17, 18].

Land-use zones—community forests

Community forest management (without commercial logging) has also been found effective in limiting deforestation[11].

Charcoal alternatives

A regulation system for natural forest production, fuelwood plantations and promotion of efficient cookstoves have been initiated to provide an alternative and more sustainable source of wood and charcoal[19]. Additional alternatives to cooking wood and charcoal are needed.

Deforestation monitoring

Deforestation monitoring has been ongoing[18] and funding and efforts have expanded with REDD+[19].

Main outcomes

Small-scale agriculture and wood energy demand continue to be primary drivers of deforestation.

Recommended future actions

- Enforce existing laws to combat deforestation[19], in combination with a sustainable financing mechanism for forests.
- Initiate spatial coordination of agricultural and forest land at the district or landscape level.
- Promote reforestation, agroforestry and alternatives to cooking with wood and charcoal, as this is a primary driver of deforestation.
References

Cambodia boasts diverse forest ecosystems, including the largest intact dry forests in Indochina—a mosaic of habitats home to large quantity and diversity of species. Deforestation between 2001 and 2018 was among the highest in the world and the remaining high value forests continue to be under pressure from population growth, illegal logging and land concessions. In recent years, the government has implemented stricter measures to crack down on illegal timber trade and land deals.

Underlying causes

Forest governance challenges include limited law enforcement capacity and lack of coordination between ministries responsible for forest management, ELCs and land titles. This can lead to overlapping claims[17] as well as weak management coordination between ministries responsible for forest management, ELCs and land reforms in neighbouring countries, such as logging bans, have increased pressure on Cambodia’s land sector[14].

Drivers of deforestation

- **Large-scale agriculture**
 - Large-scale industrial agriculture plantations are established through economic land concessions (ELCs) by local and international companies[12]. Rubber is the most significant commodity in the deforestation front, accounting for half of total ELC areas of 2.2Mha.[13] In some cases, the use of ELCs has been alleged as an instrument to legally log timber (conversion timber)[3].
- **Smallholder farming**
 - In 2014, 1.2Mha of forest area was de-gazetted to issue land titles to landless communities[12]. Alongside legal conversion, there is also illegal conversion by land speculators[4]. The relative role of subsistence farming as a deforestation driver has been decreasing over time[3] but remains significant in relatively remote areas (e.g. north-western uplands)[3].
- **Urban expansion**
 - Expansion of settlements in rural areas has been triggered by population growth and social policies encouraging rural migration and resettlement[5].
- **Illegal logging**
 - Timber concessions for selective logging are effectively suspended, but illegal logging of high value species from forestlands adjacent to ELCs, mining concession areas and hydropower projects has been alleged; timber’s is then “launched” to become legal[1].
- **Fuelwood/charcoal**
 - Over 80% of the population (both rural and urban) relies on traditional biomass for cooking[6]. It is estimated that a typical household may consume 1–2 tonnes of fuelwood per year[11].
- **Fire**
 - 90% of dry season forest fires are caused by smallholders and industrial plantations clearing land for crops[5]. Climate change is exposing forests to a longer dry period, reducing forest productivity and resilience, and increasing the risk of fire[11].
- **Tree plantations**
 - Over 100,000ha of ELCs allocated for pulp and paper plantations[8]. Outside ELCs, instances of conversion of natural forests to tree plantations by foreign aid programmes within the context of climate change mitigation have been reported (e.g. in Prey Long forest)[5].
- **Mining operations**
 - The mining sector in Cambodia is considered not well developed and small scale[3]. Most mining concessions are in east and northeast Cambodia for metals, industrial minerals, energy and gemstones, with few in production[9]. Actual mining operations may have limited deforestation impact, but can be a source of illegal logging and forest degradation. Unlicensed artisanal gold mining operations are widespread and bring multiple social and environmental challenges[8].
- **Hydropower**
 - As of 2019, seven dams are in operation with combined output of 4,700GWh in 2018, a more than 60% increase from 2017[11]. The latest and biggest Lower Sesean II dam, with reservoir size estimated at 7,500ha to 33,560ha, has caused large-scale destruction and community displacement via roads, reservoir and flooding[12,13].
- **Road expansion**
 - Presently not a major driver, road networks will become increasingly important. Cambodia has over 61,000km of road network, most of which is unpaved rural roads[14]. The proposed development of national roads, such as the Northern Sub-corridor (which runs through the deforestation corridor in Bokor National Park), is projected to bring positive economic impact to northern Cambodia[13], but the negative effects of roads on forest cover have also been documented[11,12].

Main outcomes

Protected forests are found to be representative of forests of biodiversity priority and high carbon density[8]. Lower deforestation rates are found inside protected areas than outside, but not all types are equally effective[6]. Allocation of social land concessions to poor landless families is linked to forest loss, but tenure security of local communities can be an effective strategy to reduce deforestation and forest degradation[20,12]. Approximately one-third of forest loss nationwide between 2000 and 2016 may be attributable to ELCs[12], but the rate may be slowing due to moratoria on new concessions and cancellation of some ELCs[3]. Recent government efforts to tackle illegal logging and timber trade have sent positive signals about its commitment to improving resource governance.
Key responses

Protected areas

- Protected areas have expanded significantly in Cambodia, totalling 7.5Mha (41% of country land cover)\(^1\). New protected areas totaling more than 62,000ha were established in 2018\(^2\).

Recognition of IPLCs

- Through social land concession allocation and land registration, increasing areas of forestland are being granted to poor landless households for residential use and farming. Additionally, the National Forest Programme (2010-2029) set a target to allocate 2.8Mha of production forest for establishing community forestry and to allow those living within protected areas to establish community protected areas\(^3\).

Moratoria

- Timber concessions for selective logging are effectively suspended\(^4\). The moratorium on granting new ELCs in 2012 increased the rate of forest loss inside existing ELCs in the short term due to the fear of concession licences being revoked\(^5\). The government has also postponed the construction of new hydropower dams on the Mekong River for 10 years\(^6\).

Payment for ecosystem services (PES)

- PES schemes are currently being implemented at small scale with some success in reducing deforestation\(^7\). Well-designed PES projects can have large potential as a vehicle for developing a green economy\(^8\), but some of these PES projects face challenges including unclear legal frameworks and property rights and the lack of sustainable financing mechanisms\(^9\).

REDD+ projects

- The national REDD+ strategy was officially endorsed in 2017 and is at the core of Cambodia’s nationally determined contributions (NDC) to the Paris Agreement. The REDD+ action and investment plan was drafted in 2019 and several pilots are now in place\(^10\).

Timber legality

- In earlier 2019, the government established a National Commission on Anti-Forestry Crimes aiming to crack down on all illegal logging and timber trade across the country. As a result, a few ELCs have been confiscated and several high-profile illegal-logging perpetrators have been arrested and prosecuted.

Recommended future actions

- Invest more resources in proper management with adequate capacity in protected areas.
- Promote spatial planning for land use at landscape level to better allocate land for economic development and conservation.
- Continue efforts to strengthen land management, forest governance and law enforcement.
- Improve agricultural productivity for smallholders to decouple population growth and deforestation\(^11\).

References

18. Open Development. 2019. Cambodia RECS. Available from: www.opendev柬埔寨ment cambodia.net/topics/recons-
24. WWF. 2018. WWF Cambodia congratulates government on the designation of Sambo and Prasab as Wildlife-Sanctuaries.
LAOS

Laos maintains some of the largest remaining intact forests in mainland Southeast Asia, which are home to diverse species. People are heavily dependent on forests for food, water, energy and income. Surrounded by more economically advanced neighbours, the country is susceptible to external investment in the land and energy sectors driving deforestation.

Drivers of deforestation

Smallholder farming
Under contract farming schemes, large areas of forest are converted to annual crops (e.g. maize, cassava, sugarcane) and commercial perennial plantations (e.g. rubber, coffee, cacao, pepper) for regional and global markets[5]. Shifting cultivation practised by nearly 70% of Lao population drives forest degradation rather than deforestation[5]; however, fallow lands are more prone to conversion[5,8]. When plantations are established on fallow lands, communities go further into forests to clear land for farming[9].

Large-scale agriculture
Rubber, sugarcane, biofuel and coffee are the major commodities in southern Laos[7]. Commercial agriculture is fragmented with average concession size under 500ha[7]; often in areas relatively accessible from the nearest district capital[5]. In some cases, the granting of concessions has been used as a mechanism to circumvent the timber logging ban[9].

Tree plantations
Both concessions and smallholder plantations of fast-growing trees such as eucalyptus and acacia have been promoted[10]; but contract farming is the main mechanism for establishing new plantations[11]. Approximately 0.5Mha of plantations have been established in Laos[10]. Legally, industrial tree plantations can be developed only on degraded or barren land, but in reality they are often established on forested land[7].

Hydropower
Several dam projects and power line construction have led to large-scale forest clearance. Displacement of communities by hydropower projects indirectly contributes to deforestation away from the project sites[12].

Transport infrastructure
Distance to main roads was one of the most important predictors of forest cover decrease between 2006 and 2012[4]. Laos has the least developed rail, waterway and road network in the region. More investment in transportation infrastructure, including major projects such as East-West Corridors, will have impact on forest cover change[11].

Mining operations
Mining is the most significant subsector in terms of total projects and area under investment (21% and 50% respectively)[10], though the forest area cleared for mining sites is much smaller than the concession area. Estimated 5,000ha-14,000ha deforestation by mining per year, with both large-scale and artisanal mining contributing[7].

Logging
Commercial logging as a driver may be declining in recent years due to stricter law enforcement[13,14], but logging for household consumption has increased as rural population grows[2]. Despite stricter law enforcement, illegal logging remains widespread, often carried out by local villagers who may work as hired laborers for Vietnamese traders or by concession holders who clear forest beyond their premises[5].

Fuelwood and charcoal
Mostly for subsistence consumption but also for local and regional markets through vast web of informal networks[19].

<table>
<thead>
<tr>
<th>Countries, region</th>
<th>Laos, Lower Mekong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest type</td>
<td>Humid tropical evergreen forests</td>
</tr>
<tr>
<td>Total area</td>
<td>3.6 Mha</td>
</tr>
<tr>
<td>Forest area in 2018</td>
<td>2.8Mha (79.1% of total deforestation front area)</td>
</tr>
<tr>
<td>Forest loss 2004-2017</td>
<td>0.1Mha (3.0% of forest area in 2000)</td>
</tr>
<tr>
<td>Location of deforestation</td>
<td>Central and southern Laos</td>
</tr>
<tr>
<td>Total forest core area in 2018</td>
<td>1.7Mha (59.8% of forests in 2018)</td>
</tr>
<tr>
<td>Fragmented forests 2000-2018</td>
<td>0.3Mha (8.7% of forest area in 2000)</td>
</tr>
<tr>
<td>Accumulated burned area, 2002-2019</td>
<td>0.5Mha (16.2% of forest area in 2000)</td>
</tr>
<tr>
<td>Deforestation trend</td>
<td>Increasing – upward trends till 2016, stabilization since then</td>
</tr>
<tr>
<td>Future trends</td>
<td>Deforestation rate gradually stabilizing, but remaining relatively high</td>
</tr>
</tbody>
</table>

Responses

Protected areas
The 2007 Forest Law classifies two types of forest for protection – protection forests (for ecosystem services) and conservation forests (for nature and biodiversity)[10]. Laos has 24 national protected areas[20] but no complete inventory exists for provincial or district protected areas. IUCN-registered protected areas cover 3.86Mha (16.7% of land area)[11].

Tenure rights
Customary tenure rights associated with shifting cultivation exist in most rural, mountainous areas. A land titling programme funded by donor agencies in the 1990s and 2000s sought to promote land rights by delineating village boundaries and developing village land management plans[22].

Timber legality
Laos banned log exports in 2016[14] and has made steady progress in negotiating EU FLEGT/VPA[22]. Stricter legality enforcement is overall positive, but there are also strong signs of leakage effects from Viet Nam[23].

Land-use zoning
Numerous programmes actively support land-use planning, including a new initiative to in villages around Xe Sap protected area in the south of Laos[19].

REDD+ projects
REDD+ projects in Laos are mostly small-scale, early stage pilots[24].

Voluntary standards
Limited uptake of forest certification; however, a nationwide decade-long effort to promote the development of forest management plans at village level helps the first step of putting sustainable harvesting into practice.

Rural livelihoods development
Numerous sustainable livelihoods projects/programmes led by government, local civil society organizations and international NGOs.

Deployment at wider scale
- Actively used and expanding
- Project-specific, experimental

Underlying causes

The proximity to Viet Nam and Thailand, major regional and global hubs for commodity processing, makes the country susceptible to external investment in the land and energy sectors driving deforestation. Poverty coupled with heavy reliance on natural resources for both livelihoods and national economy put strain of forests[22]. Forest laws and policies are well designed, but lack of capacity and institutional inefficiencies at multiple levels hamper their implementation and enforcement[10].
Main outcomes

Two out of Laos’ three protected area categories have a negligible impact on deforestation, while the strictest protection category has reduced deforestation rates by 24 to 33%; however, many PAs are not in biodiversity priority areas[20]. Formalization of customary tenure rights has the benefit of empowering rural communities, but has also led to loss of access to land by those practising shifting cultivation[21], granting of large concessions to companies from neighbouring countries and escalating land conflicts[22]. Strengthening tenure legality may have short-term effects on reducing illegal logging and timber trade, curbing deforestation[23]. Small-scale REDD+ projects have not been effective due to omission of high deforestation potential areas and inability to address main drivers[24].

Recommended future actions

- Promote landscape-scale land-use planning that includes mapping and strengthening of the management plan of high conservation value forests.
- Establish community-based economic development models in protected area buffer zones that include equitable benefit sharing from ecosystem services provision.
- Scale up improved plantation forest management and sustainable supply chains of timber and other forestry products (e.g. rubber), with the use of forest certification wherever feasible.

References

4. Phompila, C., Lewis, M., Ostendorf, B., and Clarke, K. 2017. Forest cover changes in Lao tropical forests: Physical and socio-economic factors are the most important drivers. (Note 62) 23.
The forests of Myanmar are home to incredible biodiversity, including important tiger and Asian elephant populations. But from 2010 to 2015 Myanmar had the third highest annual net loss of forest area in the world, losing an average of half a million hectares of forest every year. Agricultural conversion, logging and infrastructure development threaten the forests that millions of people rely on directly for their livelihoods.

Drivers of deforestation

Large-scale agriculture
Common crops (rice, nut trees, maize, rubber and oil palm) were responsible for 1Mha of forest conversion between 2002 and 2014. Most large-scale agriculture concessions were allocated in forest reserves mainly in Kachin and Tanintharyi, in heavily forested and politically contested regions. Rubber and oil palm plantations are both concentrated in the south, and suffer from low productivity and lack of oversight. Less than half of rubber plantations are tapped; one-third of plantations are planted outside concession boundaries. Logging is a motivation for companies to acquire agricultural concessions (legal conversion). Based on the government’s new economic policy and spatial modelling of cropland expansion, forest conversion for agricultural production is expected to increase.

Logging
Legal and illegal logging are leading causes of forest degradation, but can also be linked to deforestation. Logging in excess of annual allowable cut is common and illegal logging increased significantly after legal logging. A large proportion of logs exported from Myanmar into global markets are illegal, mostly transported by land from Kachin state to China as well as to Thailand and Viet Nam.

Smallholder farming
Progressive shift from smallholder farming (1975-1990) to industrial plantations (post-2000). Shifting cultivation’s significance has decreased since 2000 and is expected to decrease further. In southern Myanmar, the traditional practice of shifting cultivation has mostly disappeared, but establishment of permanent orchards by smallholders has increased.

Hydropower
Between 2002 and 2014, 140,000ha forests were affected by hydropower development, with an additional 250,000ha potentially affected by planned projects. Logging in anticipation of proposed dam projects is also common. Some projects have been suspended due to public outcry over environmental and social impacts (e.g. Myitsone Dam in Kachin state would inundate 76,600ha of forest).

Mining
90,000ha of potential mining sites identified (including 52,000ha operating sites), mostly in the north (Kachin, Sagaing). Significant expansion in 2002-2015 and new mining legislation intends to encourage more foreign investment.

Fuelwood and charcoal
85% of Myanmar’s population depends on wood and charcoal for fuel. Annual fuelwood extraction increased from 68 million m³ to 86 million m³ between 2000 and 2013. Increase in rural settlement areas has led to greater demand for fuelwood in nearby forests. Additionally, charcoal export to China increased by more than 2,500%.

Transport infrastructure
Road infrastructure tends to be poorly planned and designed, which has contributed directly to forest loss and soil degradation. In Kachin and Shan states, road construction has been followed by the establishment of rubber concessions.

Underlying causes

Overlapping and conflicting priorities and agendas by the forestry and agriculture sectors and weak tenure security are main causes. Political and military conflicts are linked to lower deforestation in conflict areas, but result in higher deforestation elsewhere due to displacement of communities and lack of law enforcement. Deforestation also increased following the ceasefire. Domestic, regional and global demand for natural resources, energy and commodities, especially from China, also puts pressure on forests.

Main outcomes

Area-based interventions can be effective when adequately implemented, but are hampered by the lack of coordination across different government agencies and sectors. Sector-based interventions are only emerging so their effectiveness remains to be seen.

Recommended future actions

- Implement zero-deforestation supply chain commitments for rubber and other commodities.
- Promote timber legality and community forestry.
- Strengthen and scale up land-use planning that incorporates enforcement, community-based support, private sector investment and spatial monitoring.
Key responses

Protected areas

The Myanmar government has a target of formally designating 10% of the country’s area for its protected system area (2012–2022). Currently, 6.35% or 42.77M ha (2012). Preliminary evidence suggests forest loss is lower inside national parks than in surrounding areas (2012).

Recognition of IPLCs

The 2012 Farmland Law allows farmland cultivation rights to be attained and traded through land-use certificates, but only 15% of households obtain the certificates (2012). Also ongoing efforts to establish community forestry with 3,840 groups covering 21.07M ha formed by 2017, with mixed results (2012).

Land-use zoning

Inactive concessions on forest reserves with intact forest cover were cancelled under the Vacant, Fellow and Virgin Land Law and efforts to secure remaining HCV forests have been initiated (2012). Multiple international environmental NGOs are engaged in Tanintharyi to help devolve land-use planning taking into consideration national capital and species conservation as well as social needs (2012).

REDD+ related initiatives

The government began implementing its UN-REDD national programme in 2016 (2012). The government has also proposed to reduce deforestation by 50% and restore 900,000ha by 2030 (pending for final approval) as part of its nationally determined contribution (NDC) under UNFCCC (2012).

Timber legality

Log export ban enacted since 2014, yet cross-border trade with China has continued, especially for high value species (2012). Voluntary partnership agreement (VPA) negotiations with the EU began in 2013 with ongoing progress in capacity building for civil society and development of timber legality assurance systems (2012). Engagement of civil society has potential to address underlying causes of deforestation (2012).

Traceability of supply

Myanmar joined the Extractive Industries Transparency Initiative (EITI) in 2014, covering mining and timber sectors. It has achieved “meaningful progress” status (2012) but it is too soon to tell if this will have measurable impacts on deforestation. The Global Platform for Sustainable Natural Rubber was launched as a multi-stakeholder platform to, among other objectives, increase supply chain transparency and traceability (2012).

References

24. IUCN. 2020. IUCN Protected Planet Database. Available from: www.protectedplanet.net/country/Myanmar

Copyright

DEFORESTATION FRONT

SUMATRA

The island of Sumatra has a long history of human intervention and comprises a diversity of land uses involving smallholder farming and large-scale plantations for palm oil and pulpwood production. Much of the population is rural but there is increasing urbanization and infrastructure expansion. A significant portion of Sumatra’s natural forests have been lost since the mid-1980s.

Drivers of deforestation

Large-scale oil palm plantations

Expansion of oil palm plantations (8Mha) has been another important deforestation driver in both logged forests and peatlands. Palm oil processors have more processing capacity than they can supply from their own plantations, so the industry relies on third party suppliers including “independent smallholders” without having full traceability to raw material origins.

Tree plantations

Natural forest clearance to produce pulp and develop pulpwood plantations has been one of the main drivers of deforestation in Sumatra, with Riau province having the highest area of pulpwood plantation concessions (4.8Mha). There is a gap between wood supply from existing plantations and existing and planned milling capacity, exacerbated by extensive forest/land fires in 2015, and the industry continues to be involved in deforestation.

Smallholder farming

Linked to a significant increase in “independent smallholder” supplying palm oil. Often these farmers face several constraints to adopt improved production practices.

Fires

Fires are often used to clear land after deforestation before planting crops or developing plantations. Use of fires is problematic, especially on Sumatra’s deforested peatlands that are drained by the pulp and paper and palm oil industries to maintain their plantations and made vulnerable to being burnt for a long time.

Road expansion

There is an expanding network of local roads, and the completion of the Trans-Sumatra Highway could threaten three critical areas of remnant forests by facilitating human incursions.

Mining operations

There are several large-scale mining operations, along with small-scale coal mining and small-scale gold mining, e.g., in West Sumatra. These operations tend to place indirect pressures on forests.

Commercial logging

Encroachment and illegal logging in retired logging concessions has decreased but still occurs. Localized illegal logging at smaller scales is difficult to stamp out.

Underlying causes

Underlying causes are related to business and government emphasis on using natural resources as the main driver of economic development, which results in land allocation for plantations and mining. These activities are associated with speculative land occupation and increased rural population pressure. A related issue is the lack of incentive systems for local stakeholders to protect their forests.

Main outcomes

Protected areas have not been effective in halting deforestation across the region given their limited coverage, and their exposure to encroachment. The moratorium on new permits for the conversion of primary forest and peatlands and the more recent moratorium on the conversion of peatlands have contributed to reducing deforestation and pressure on peatlands. Voluntary zero-deforestation commitments by palm oil companies have been inadequate in preventing deforestation since they exclude a number of medium-size plantations, and have limited influence on the performance of smallholders – indeed, a lack of plantation traceability means smallholders and their risks are not even identified. Companies have not restored peatlands despite the legal requirements, which have also recently been revoked.

Recommended future actions

- Improve alignment between government policies and global market trends and efforts to curb emissions from land-use change and deforestation.
- Ensure that government policies to stop deforestation and conversion and restore peatlands are more strongly implemented and followed by commercial actors in the field.
- Strengthen coordination between key stakeholders across sectors as well as national and provincial governments to ensure that plantation expansion into forest areas and peatlands is being constrained at all levels.
- Enhance monitoring of zero deforestation commitments made by major producers, buyers and investors while ensuring greater transparency and disclosure of progress.
- Expand efforts to support smallholders to implement best management practices and access finance and premiums markets.
- Develop partnerships to link corporate actors and government bodies to advance sustainable supply and conservation, embracing wider landscape approaches.
To regulate forest conversion, the government issued a moratorium on new conversion permits in primary forests and peatlands in 2011[15], and in 2016 enacted a moratorium banning expansion in peatlands[16]. In 2018, the president enacted a moratorium on new oil palm plantation licences for three years and a review of existing palm oil company licences.

Some provincial governments have developed land-use plans that guide land allocation decisions and green growth plans, e.g. in Aceh[21] and South Sumatra[20]. Measures to prevent fire have been associated with the moratorium on peatlands as well as with regulations and efforts towards peatland restoration and greater enforcement[19].

The largest palm oil corporate groups embraced Roundtable on Sustainable Palm Oil (RSPO) certification and deforestation-free commitments, yet their involvement in deforestation continues due to difficulties in putting in place traceability systems for their third-party suppliers[14]. Forest concessions have embraced reduced-impact logging practices and forest certification[21]. The largest pulp and paper companies have been disassociated by the Forest Stewardship Council (FSC) and have not yet eliminated deforestation from their supply chains[27].

The government of Indonesia introduced the Indonesian Sustainable Palm Oil (ISPO, in 2011) scheme and Timber Legality Assurance System (SVLK, in 2009) as mandatory certification for all commercial plantation operators. The latter was recognized as the basis of the EU voluntary partnership agreement (VPA) that came into effect in 2014[24]. However, both are only legality standards and do not guarantee chain of custody or zero deforestation.

21 REDD+ projects were identified by UN-REDD by 2013 with a varied focus only legality standards and do not guarantee chain of custody or zero deforestation.

Key responses

References

Drivers of deforestation

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree plantations</td>
<td>Pulp and wood plantations developed in Indonesian Borneo reached about 5.9Mha in 2014. Much of this expansion has been in lowland forests in West and East Kalimantan[12]. In Indonesian Borneo, the expansion of tree plantations has been declining since the early 2000s with some oscillations[13], but tree plantations have increased since 2010 in Malaysian Borneo[5,6].</td>
</tr>
<tr>
<td>Large-scale oil palm plantations</td>
<td>Oil palm plantations are an important source of revenue[11,14], and have expanded in logged forests and peatlands[8]. Oil palm covered 2.4Mha in 2005, doubled to 4.9Mha in 2010, and reached more than 7Mha by 2015[7,15]. The expansion has recently declined from more than half a million hectares annually on average in 2008-2012[16], but companies hold large forested areas as “land banks”[17].</td>
</tr>
<tr>
<td>Smallholder farming</td>
<td>Expansion of smallholder farming systems and, more importantly, adoption of oil palm by smallholders in Indonesian Borneo have increased pressures on forests[18]. This is also linked to in-migration to palm oil production zones, and plantation workers investing in small-scale oil palm plantations[19]. In Sabah state in Malaysian Borneo, smallholder rubber plantations are also leading to deforestation[20].</td>
</tr>
<tr>
<td>Fires</td>
<td>Traditionally used for clearing land, but often spreads into drained peatlands. Some burnt tracts of forest do not recover, and tend to convert into shrubland and grasslands[21]. In Sarawak, where oil palm plantations are not allowed to use fire for land clearing, fires are rare.</td>
</tr>
<tr>
<td>Transport infrastructure</td>
<td>There is ongoing expansion of tertiary and local roads into the heart of Borneo. Planned road investment associated with the Pan-Borneo Highway may have increased pressure on forests[22]. Several hydropower dams have been developed in Sarawak that resulted in localized deforestation where dam reservoirs were created, particularly during the period between 2000 and 2015.</td>
</tr>
<tr>
<td>Timber extraction</td>
<td>Poor forest management of production forest areas often leads to forest degradation. A portion of these forests that have a lower commercial value for timber have been exposed to encroachment and conversion to other land uses, including plantations[23].</td>
</tr>
<tr>
<td>Mining</td>
<td>In Indonesian Borneo, mining operations, mainly for coal, are small in area but have indirect impacts on road expansion and influx of people[24]; dynamics depend on oscillating demand[25]. Gold mining is gaining momentum in Sabah (Malaysian Borneo)[26].</td>
</tr>
</tbody>
</table>

Main outcomes

Illegal logging has declined due to timber monitoring efforts[27], which have been complemented with increased monitoring of deforestation in Sarawak[28]. In Indonesian Borneo, deforestation from industrial oil palm plantations has decreased over time, which results from strengthened law enforcement to prevent forest fires and land clearing[29], and likely from the moratoria on forest and peatland conversion. Certification of oil palm plantations may have contributed to reduced deforestation, but not fire or peatland clearance[21,30]. There has not been any significant fire on peat in Sarawak in recent years due to stringent regulations. In Indonesian Borneo, remaining deforestation is associated with pressure from smallholders and medium-size plantations that do not have zero-deforestation commitments or other voluntary commitments. The difficulty for small- and medium-scale operations to comply with these commitments has called into question their potential to prevent deforestation and peatland conversion at regional scales[21].

Underlying causes

Underlying causes differ between Indonesian and Malaysian Borneo. In Indonesia, they are linked to misguided policies and processes of land concession allocation, along with land appropriation involving local elites[21]. Foremost among these is the prioritization of mining and plantation licences (considered strategic for national development) over commercial logging in production forests. Investments in mining and plantations, following growing international and domestic demand for commodities (e.g. palm oil, coal), have also fuelled forest conversion, as well as pressures due to in-migration to frontier areas.
Key responses

Protected areas

The Heart of Borneo is the main conservation agreement to maintain established protected areas and wildlife corridors, and support sustainable management of production forests[23].

Moratoria

The Indonesian government issued a moratorium on new conversion permits in primary forests and peatlands in 2011[14], and in 2016 enacted a moratorium banning expansion in peatlands[23]. Sarawak has announced no more development on peat and no new licences for timber concessions[23].

Land-use zoning

Provincial governments have developed land-use plans that guide land allocation decisions, accompanied by green growth plans[23]. Sarawak has a land-use policy to set aside at least 57% of land to be under permanent forest and protected areas. In Sabah, the land-use policy aims to set aside 30% of land under protected areas and 50% under forest cover[23].

Voluntary standards

The largest palm oil corporate groups have embraced Roundtable on Sustainable Palm Oil (RSPO) certification and deforestation-free commitments, and some have put in place traceability systems to track third-party suppliers[24]. In Sarawak, certification is mandatory for all timber concessions[23].

Timber legality

In 2009, the Indonesia government established a timber legality assurance system known as SAKL. It was recognized as the basis of the EU voluntary partnership agreement that came into effect in 2014[14]. In Sabah, a timber legality assurance system was issued in 2016, and a similar system was issued in Sarawak in 2018[23].

Mandatory standards

In 2011, the government of Indonesia introduced the Indonesian Sustainable Palm Oil (ISPO) scheme as a requirement for all commercial plantation operators. Progress has varied but ISPO is still very much part of the palm oil sustainability plans. In 2017, the Malaysian government announced that the Malaysian Sustainable Palm Oil standard would be mandatory for all palm oil areas by 2019[24], yet this deadline was not met and was pushed to 2020.

REDD+ projects

To date, 27 REDD+ projects have been established in Kalimantan, and a few in Sabah, with diverse targets, timelines, scope and operational approaches[24].

Traceability of supply

The main palm oil corporate groups (e.g. Cargill, GAR, Musim Mas, Sime Darby Plantation and Wilmar) issued deforestation-free commitments and put in place traceability systems[24].

Sustainable finance

Several specific projects and initiatives have been implemented at the municipal level to de-risk investments, mainly to support sustainable palm oil supply[24].

Sustainable livelihoods

Several projects exist to enhance land management and agricultural supply and build alternative livelihoods, such as those implemented by IDH in West Kalimantan[24].

References

121
DEFORESTATION FRONT

DEFORESTATION FRONT KEY FACTS

NEW GUINEA – INDONESIA AND PAPUA NEW GUINEA

The island of New Guinea is sometimes seen as the “last frontier”: it still has large natural forests with rich biodiversity and many indigenous groups. These forests, however, have undergone substantial losses – particularly in Papua New Guinea (PNG), but also increasingly in Papua Indonesia. The region is unusual in that the timber trade is still a major driver of forest loss, although it has now been overtaken by pulpwood and palm oil.

Drivers of deforestation

<table>
<thead>
<tr>
<th>Subsistence agriculture</th>
<th>Probably largest cause of deforestation overall[^1], relying heavily on swidden (shifting cultivation), although disputes remain about its relative importance compared to timber.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging</td>
<td>PNG was the world’s largest tropical timber exporter in 2014[^5], much as raw logs[^2], 15Mha have been identified for timber but logging usually causes degradation rather than deforestation[^2]. Most operations in PNG are probably illegal[^2, 3], whereas this is not the case in Papua Indonesia[^4], where there were 73 concessions in 2018[^5].</td>
</tr>
<tr>
<td>Commercial agriculture</td>
<td>Increasing, including oil palm expansion[^7] especially in PNG but also West Papua[^4], where the legality of concession development has been questioned[^8]. Smallholders are also changing from subsistence to commercial production of crops like sweet potato[^10].</td>
</tr>
<tr>
<td>Pulpwood plantations</td>
<td>There were 15 pulpwood concessions in 2018, responsible for clearing about 577,300ha of forest[^2].</td>
</tr>
<tr>
<td>Road expansion</td>
<td>An increasing pressure, with a decision to double the road network in PNG over the next three years, much of it through lowland forest[^6], and for a Trans-Papua highway through Papua Indonesia[^9].</td>
</tr>
<tr>
<td>Mining operations</td>
<td>Mining is controversial[^9] but only a minor direct cause of forest loss[^11]. In 2018 in Papua Indonesia there were 120 concessions responsible for 75,500ha of forest loss since 2000[^12].</td>
</tr>
<tr>
<td>Fire</td>
<td>Fires occur, although their role in permanent forest loss is unclear[^11].</td>
</tr>
</tbody>
</table>

Underlying causes

Forest loss in both countries has long been exacerbated by weak governance, internal political disputes and land tenure systems susceptible to exploitation by outsiders able to strike deals with local chiefs[^22].

Counties, region	Papua New Guinea (PNG), Indonesia (Papua)
Forest type	Upland/lowland tropical moist
Total area	35.7Mha
Forest area in 2018	30.6Mha (85.7% of total deforestation front area)
Forest loss in 2004-2017	1.3Mha (4.0% of forest area in 2000)
Total forest core area in 2018	21.8Mha (71.4% of forests in 2018)
Fragmented forests 2000-2018	1.3Mha (4.1% of forest area in 2000)
Accumulated burned area, 2002-2019	0.4Mha (1.2% of forest area in 2000)
Deforestation trend	Increased[^1]; low official figures in Papua Indonesia disputed[^4]. Also fragmentation[^4]. According to official estimates deforestation in Indonesian Papua has doubled from about 40,000ha on average per year during 2006-2009 to about 80,000ha during 2014/15 and 2017/18[^1].
Future trends	Likely to increase if current trends continue

Responses

<table>
<thead>
<tr>
<th>Protected areas</th>
<th>Protected areas covered 1,724,800ha of PNG, 3.69% of the country, and 6,844,900ha of remaining forest area in Papua Indonesia in 2018[^30].</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDD+</td>
<td>Voluntary governance standards for REDD+ are being developed[^21], most REDD+ schemes under discussion currently rely on reduced impact logging rather than setting forest aside from development[^27].</td>
</tr>
<tr>
<td>Land-use planning</td>
<td>The governors of Indonesia’s Papua and West Papua provinces signed a pledge to conserve 70% of the land in their jurisdictions[^24]. The UK government is currently supporting work in Indonesian Papua to introduce a number of climate initiatives that aim to replace planned deforestation in the region[^25].</td>
</tr>
<tr>
<td>Voluntary standards</td>
<td>PNG recently launched a second version of a National Forest Stewardship Standard[^26]; in late 2019 there were three certified companies and one application outstanding[^27]. West Papua also has some Forest Stewardship Council (FSC) certified operations although one is currently in dispute[^4].</td>
</tr>
<tr>
<td>Sustainable forest management</td>
<td>In PNG, six schemes promoting small-scale timber operations by local communities, using portable sawmills, all failed to be financially viable once donor funding ceased[^29].</td>
</tr>
<tr>
<td>Timber legality</td>
<td>Papua Indonesia has made strong commitments to conservation of its remaining forests, although it is still unclear how this will work in practice[^31].</td>
</tr>
<tr>
<td>Recognition of IPLCs</td>
<td>Customary land formalization has been introduced but the processes have sometimes been captured by powerful individuals or companies, so have contributed to neither poverty reduction nor forest conservation[^31].</td>
</tr>
</tbody>
</table>

[^1]: Primary cause of forest loss and/or severe degradation
[^2]: Secondary cause of forest loss and/or severe degradation
[^3]: Less important cause of forest loss and/or severe degradation
Main outcomes

There are serious problems with the effectiveness of protected areas\(^1\). Papua Indonesia has lost 46,678 ha inside protected areas since 2000\(^1\). The island is still heavily forested, particularly in the western half, but development is building. West Papua has some of the most intact tropical forest left in the world, so deforestation fronts here are particularly worrying.

Recommended future actions

- In Papua Indonesia, support the implementation of the provincial government declaration that commits to protect 70% of the land mass.
- Provide alternative economic development measures that align with providing incentives for government to maintain forest cover.
- Recognize Indigenous land rights and take local rights into account in any sustainable forest management.
- Increase the protected area network, while recognizing the challenge of integrating this into existing land tenure arrangements; this might be an area where other effective area-based conservation measures (OEAMs) and REDD+ projects offer real advantages.
- Develop realistic pathways to promote sustainable forest management.

References

DEFORESTATION FRONT

EASTERN AUSTRALIA

The forests of Eastern Australia are considered a global biodiversity hotspot[1]. Nearly half of the original forested area has been lost, with great variation among forest types[2]. The once vast brigalow and grassy box forests of inland eastern Australia have been cleared below 10% and are now endangered or critically endangered[3]. Over 700 native plant and animal species are threatened by forest habitat destruction including the iconic koala[4]. Deforestation primarily for pasture development is ongoing at a significant level although highly dispersed in the Eastern Australia front[5, 6]. Fires of unprecedented ferocity due to climate change are likely also driving forest loss or change, particularly of the unique Gondwanan relict rainforests[7].

Drivers of deforestation

Livestock

Development of livestock pasture is the chief driver of forest loss in Eastern Australia, accounting for 75%[8, 9]. There was a spike in large-scale clearing for crops in Queensland after laws were weakened in 2013, but these crops were primarily grain and fodder for livestock[10]. This loophole was closed in 2018[11].

Forestry

Harvest for timber is a minor driver of loss, accounting for 16%, mostly in the state of New South Wales (NSW). Intensified logging of state forests, in addition to significant private native forestry[12], make it the primary driver of deforestation and degradation in NSW[13].

Fire and drought

Increasing frequency and intensity of fires due to anthropogenic climate change, enhanced by forest fragmentation and weed invasion, is predicted to result in transition of large areas of forest to woodland or savannah[14]. The 2019-20 summer bushfires burned 7.3Mha of the Eastern Australia forests, almost all in NSW. For at least 1Mha of this, the forest canopy burned[15]. Half of all Gondwanan rainforests burnt, and may not recover[16, 17].

Cropping

Conversion of grazing land to cropping land is the primary driver of clearing in northwest NSW, driven by increased returns and land speculation to increase land values.

Underlying causes

Grazing land capital value is increased greatly with forest clearing; landholders are often mortgaged to banks and are under pressure to extract more value by clearing[18]. Climate change is a significant and growing cause of deforestation because of increasingly severe droughts, fires and low humidity affecting production and driving forest loss[19].

Main outcomes

Growth of protected areas has largely stalled due to lack of government interest, except for rapid growth of indigenous protected areas, which are largely in unforested arid areas[20]. Vegetation laws are governments’ preferred approach to reduce deforestation but have had a chequered history and are now universally weaker than they were in the mid-2000s. Deforestation-free beef is a major and promising innovation in preventing deforestation, but progress is slow and there is still no accepted operational methodology or facility to verify or certify products as deforestation free[21].

Recommended future actions

- Increase investments in protected areas and strengthen forest protection laws.
- Promote verifiable progress in deforestation-free supply chains, especially for beef.
- Enhance funding to support farmers and graziers to regenerate forests, with incentives for those who demonstrate improved forest condition.
- Develop policies and structures to support a transition from native forest logging to plantations and independently certified forest management.

Keys facts

- **Countries, region**: Australia, Oceania
- **Forest type**: Mostly eucalypt or acacia-dominated subhumid tropical, subtropical and temperate forests and woodlands
- **Total area**: 101.5Mha
- **Forest area in 2018**: 20.5Mha (20.2% of total deforestation front) based on forest estimates from a global assessment; ~45Mha remains of original 86Mha (52%), with ~6Mha secondary forest cover based on SLATS[5]
- **Forest loss 2004-2017**: 0.7Mha of forests (3.5% of forest area in 2000) based on Terra-I estimates; 0.97Mha (4.5% of forest area in 2000) based on WWF-Australia estimates; ~2Mha 2004-2017, up to 5Mha when secondary forest clearing is included based on SLATS[5]
- **Location of deforestation**: Inland and coastal areas of the states of Queensland and New South Wales
- **Total forest core area in 2018**: 9.9Mha (48.5% of forests in 2018) based on forest area from estimates from a global assessment
- **Fragmented forests 2000-2018**: 1.2Mha (5.7% of forest area in 2000) based on estimates from a global assessment
- **Accumulated burned area, 2002-2019**: 6.5Mha (30.8% of forest area in 2018) based on estimates from a global assessment
- **Deforestation trend**: Increasing again after a period of decline as legal restrictions weakened[5]
- **Future trends**: Uncertain – no immediate prospects of decline

Notes

- Primary cause of forest loss and/or severe degradation
- Secondary cause of forest loss and/or severe degradation
- Less important cause of forest loss and/or severe degradation
Key responses

Protected areas

Protected areas growth stalled in Australia when the key national government grants programme was terminated in 2013; at its height the programme resulted in 2.5Mha of high conservation value land protected, although not all of this was in Eastern Australia[12]. Indigenous protected areas have grown dramatically, but these are in areas where deforestation was never an issue[8]. Private protected areas have grown steadily, but these are not generally protected against mining[4].

National threatened species law

The national Environment Protection and Biodiversity Conservation Act, if enforced, could have prevented a great deal of clearing, including of secondary forests with threatened species habitats. A comprehensive failure by agricultural developers to observe the law and the regulator to enforce it undermined its effectiveness[20].

State vegetation laws

State vegetation management laws have played a leading role in reducing the loss of primary forests since 2000, but laws have since been weakened in every state[12]. Laws in Queensland were weakened in 2013 and in NSW in 2017. Although laws were partly restored in Queensland in 2018, there has yet to have a significant impact on clearing rates, which have been increasing since 2011 after major declines in the previous decade[4].

Deforestation-free beef

The industry marketing body Meat and Livestock Australia has committed to carbon neutrality for the beef industry by 2030[19]. The Australian Red Meat Council’s Australian Beef Sustainability Framework has begun collecting data on deforestation due to beef[22]. Major retailers have made commitments to remove deforestation from supply chains, but none of these have been operationalized as yet[8].

Land restoration, carbon farming and environmental stewardship

The Australian, Queensland and NSW governments have a range of markets to support carbon offsets and land restoration, particularly to financially reward graziers and farmers who allow natural forest regeneration. Additional financing and long-term funding security is required to expand and improve these schemes, secured with covenants on land titles or carbon farming contracts to provide permanent protection. These would assist conservation of Australia's globally significant forest carbon stocks, enabling them to be actively managed as a carbon sink to deliver increased carbon abatement and sequestration to support a safe climate.

References